Journal of Organometallic Chemistry. 180 (1979) 205–299 © Elsevier Sequoia S.A., Lausanne --- Printed in The Netherlands

CHROMIUM, MOLYBDENUM, AND TUNGSTEN

ANNUAL SURVEY COVERING THE YEAR 1978

JIM D. ATWOOD

DEPARTMENT OF CHEMISTRY, STATE UNIVERSITY OF NEW YORK AT BUFFALO, BUFFALO, NEW YORK 14214 (U.S.A.)

CONTENTS

Introduction	206
Dissertations	207
Reviews	207
Synthesis and Reactivity Metal Carbonyls Carbenes and Carbynes. Carbynes. Aromatics and Cyclopentadienyls. Aromatics. Cyclopentadienyls. Larger Rings. Olefins, Acetylenes, Dienes and Allyls. Alkyls and Hydrides. Metal-Metal Bonded Systems.	207 207 216 221 221 224 232 237 237 240 245
Chelates Nitrosyls	252 257
Kinetics and Mechanisms	259
Catalysis and Organic Synthesis. Olefin Metathesis Other Catalytic Reactions Organic Synthesis	262 262 263 264
Photochemistry	267
Spectroscopic Studies Infrared and Raman Magnetic Studies Photoelectron Spectra, Electronic Spectra and Calculations Miscellaneous Physical Studies	270 270 271 272 272
Structure Determinations	276
References	286

.

.

ABBREVIATIONS

```
acac - acetylacetonate
```

bipy - bipyridine

Bu - n-butyl

t-Bu - t-butyl

COT - cyclooctatriene

Cp - cyclopentadienyl

dam - bis(diphenylarsino)methane

das - o-phenlenebis(dimethylarsine)

diphos - 1,2-bis(diphenylphosphino)ethane

dmpe - 1,2-bis(dimethylphosphino)ethane

dpm - bis(diphenylphosphino)methane

Et - ethyl

Me - methyl

o-phen - o-phenanthroline

```
Ø – phenyl
```

```
piper - piperidine
```

pom-pom - 1,2-bis(dimethylphosphito)ethane

Pr – propyl

i-Pr - isopropyl

Pz – pyrazine

TMEDA (tmen) - tetramethylethylenediamine

INTRODUCTION

This survey covers the 1978 literature and is the first year for my participation. The coverage and format are very similar to those used by M. Darensbourg, D. Darensbourg, and G. Dobson, although some differences in interpretation naturally occur. The main journals were covered directly and a computer search was accomplished to insured a comprehensive review of the literature. This search used the same key word index that was used in previous years to ensure comparable coverage.

Since this is my first year for the survey, I will explain the method used to place papers in one section or another. A general division was made into papers that dealt primarily with Synthesis and Reactivity or with Physical Studies. The Synthesis and Reactivity Section is divided according to the groups coordinated to the metal with aromatics, cyclopentadienyls, and carbonyls having the lowest priority (i.e. $CH_3MO(Cp)(CO)_3$ is in alkyls). The Physical Studies Section is divided very similar to previous years although the growth of photochemistry had led to a separate section on Photochemistry.

DISSERTATIONS

Several dissertations appeared in 1978 dealing with Group VI organometallic compounds. Alkyl and arylpentacarbonyltungsten anions were prepared and their reactivity investigated;¹ the photochemistry and spectroscopy of $W(CO)_5L$ was reported;² the deposition of Cr vapor and aminodifluorophosphines was examined;³ reactions of phosphorus ligands coordinated to Group VI metals were observed;⁴ organophosphines of Mo and Cr were described;⁵ carbanions were observed to add to n⁶-arenetricarbonylchromium complexes;⁶ and the Freidel-Crafts acylation of n⁵-C₅H₅Cr(CO)₂NO was reported.⁷

REVIEWS

Reviews of the following areas of Group VI organometallic chemistry were published: matrix isolation of the Group VI metal carbonyls;⁸ reviews of the photochemistry of isocyanides, $M(CN\emptyset)_6$, M = Cr, Mo, W,⁹ and of the photoreactions of alkyl halides with $Mo(N_2)_2(diphos)_2$;¹⁰ tungsten cyclopentadienyl and tungsten and molybdenum cyclobutanes;¹¹ three reviews of the utility of arenetricarbonylchromium in organic synthesis;¹²⁻¹⁴ stereoselective preparations and reactions of cationic n⁴-diene and n³-allyl complexes of molybdenum.¹⁵

SYNTHESIS AND REACTIVITY

Metal carbonyls

A new synthesis of $W(CO)_6$ and $Mo(CO)_6$ has been reported.¹⁶ The reaction of the metal oxides with CO at 300°C and 2000 atm is reported to give the hexacarbonyls in near quantitative yield.¹⁶ The use of $W(CO)_6$ in liquid allylglycolcarbonates led to plastic lenses with photochromic and IR-absorbing capabilities.¹⁷

The reaction of the hexacarbonyls with different species continues to provide new complexes. A specific route to cis-substituted complexes of molybdenum hexacarbonyl has been observed.¹⁸ The reaction of piperidine with $Mo(CO)_6$ in refluxing heptane led to cis- $Mo(CO)_4(C_5H_{10}NH)_2$. This complex reacts at moderate conditions (40°C) with L to give cis- $Mo(CO)_4L_2$ (L=P P_3 , PB u_3 , P(0p)₃, etc.).¹⁸

$$Mo(CO)_{6} + C_{5}H_{10}NH \rightarrow cis-Mo(CO)_{4}(C_{5}H_{10}NH)_{2} \stackrel{L}{\rightarrow} cis-Mo(CO)_{4}L_{2}$$
(1)

These cis-complexes are apparently sterically crowded as qualitative observation of the dissociations are explainable in terms of the ligand "cone angle".¹⁸ Darensbourg has also reported a route to $Mo(CO)_5L(L=CO, P(C_6H_5)_3, and P(C_4H_9)_3)$ species specifically labeled with oxygen-18 in the equatorial position.¹⁹ The

metal carbonyl complex, Mo(CO)₅L, dissolved in dry benzene is added to 11 M $Na^{18}OH$ in the presence of a phase transfer catalyst, N-C₄H₉NI.

$$Mo(CO)_{5}L + Na^{18}OH \xrightarrow{n-C_{4}H_{9}NI}{75^{\circ}} \rightarrow Mo(C^{*}O)_{5}L$$
 (2)

For ligands which are poorer electron-withdrawing than CO, the equatorial CO's exchange much faster than the axial.¹⁹ Reaction of the hexacarbonyls with the new bidentate ligand, $(CH_3O)_2PCH_2CH_2P(OCH_3)_2$ (pompom), led to both the monoand bis-substituted complexes. M(pom-pom)(CO)₄ (M=Cr, Mo) and M(pom-pom)₂(CO)₂ (M = Cr, Mo, W).²⁰ The infrared frequencies indicate that pom-pom is a very strong π -accepting ligand.²⁰ Another strong π -accepting ligand, 1,2-bis-(difluorophosphino) ethane has been observed in complexes with Mo by replacement of norbornadiene in (C₇H₈)Mo(CO)₄.²¹

$$(C_7H_8)M_0(CO)_4 + PF_2C_2H_4PF_2 \rightarrow M_0(CO)_4(PF_2C_2H_4PF_2) + C_7H_8$$
 (3)

This ligand is a very strong π -acceptor as shown by infrared frequencies of the carbonyls at 2074, 2005, 1991 and 1973 cm⁻¹.²¹ A similar ligand, 1,2-bis(difluorophosphine) cyclohexane

$$(C_7H_8)_2M_0 + PF_2C_6H_{10}PF_2 \rightarrow Mo(PF_2C_6H_{10}PF_2)_3$$
 (4)

This complex was characterized by IR, NMR (${}^{1}H$, ${}^{19}F$, ${}^{31}P$, and ${}^{13}C$), and mass spectroscopy. This ligand is also a strong pi-acceptor, bidentate ligand.²² The photolytic reaction of pyrazine (pz) with Mo(C0)₆ has been observed.²³

$$Mo(CO)_{6} + pz \xrightarrow{Nv} Mo(CO)_{5}pz + (Mo(CO)_{5})_{2}pz$$
 (5)

 $Mo(CO)_5 pz$ was detected in solution (absorption at 387 nm).²³ Removal of the solvent led to formation of $(Mo(CO)_5)_2 pz$, although addition of pyrazine reverses the reaction. The kinetics were studied and the UV-visible spectra interpreted in terms of pi-bonding.²³ Reactions of L-O⁻K⁺ (L= anion of succinimide, phthalimide, and benztriazole) with the hexacarbonyls have been reported with the

$$M(CO)_6 + L - 0^{-}K^{+} \frac{100^{\circ}}{5} + ((CO)_5 ML) - K^{+} + CO_2$$
 (6)

product indicating a deoxygenation of the N-O bond.²⁴ Reaction also occurs with $CpW(CO)_3Cl$ by replacement of the chloride leading to $CpW(CO)_3L$.²⁴ Reaction with complete replacement of the CO's was observed with picoline acid and peroxydisulfuryldifluoride. The products observed were an eight-coordinate complex Mo(Pic)₄, and M(SO₃F)₃ (M = Cr, Mo, W), respectively.^{25,26} Attachment of the metal carbonyls to a polymer was accomplished by reacting

poly(styry])bipyridine with $M(CO)_6$ (M=Cr, Mo, W) in THF reflux.²⁷ Infrared characterization indicated a cis structure, polymer-Ph-bipy- $M(CO)_4$.²⁷ Ellis extended his research on super-reduced metal carbonyl anions by synthesizing Na_A $M(CO)_4$ (M=Cr, Mo, W).²⁸

$$(TMEDA)M(CO)_4 \frac{Na}{NH_3} > Na_4 M(CO)_4 + TMEDA$$
(7)

The reaction of (tetramethylethylenediamine)-TMEDA $M(CO)_4$ with sodium in liquid ammonia gave $M(CO)_4^{-4}$ in near quantitative yield.²⁸ The product was not isolated but characterized by infrared bands centered at 1500 cm⁻¹ and by reactions such as the following.

$$Na_4M(CO)_4 + (C_6H_5)_3SnC1 \rightarrow Na_2((C_6H_5)_3Sn)_2M(CO)_4$$
 (8)

The bis substituted complex was the only product Observed.²⁸

Reactions of several more highly substituted derivatives of the hexacarbonyls were reported in the past year. Darensbourg and Salzer have reported a series of reactions of $Mo(CO)_3$ (triene) (triene=bicyclo[6.1.0]nona-2,4,6triene).²⁹

$$Mo(CO)_{3}(triene) + L \rightarrow Mo(CO)_{3}L(triene)$$
(9)

 $L=^{13}CO$, PØ₃, P(OØ)₃ They observe only cis products for all L except P(OCH₃)₃ which further substitutes.²⁹

This sequence provides a route to stereospecifically labelled $Mo(CO)_3^{13}COL_2$, L= phosphites and phosphines. The observation of stereospecifically labeled product suggests that the intermediates, $\Pi = Mo(CO)_4$ and $Mo(CO)_4L$, are non-fluxional.²⁹ Interconversion of cis-trans isomers in seven coordinate $MoX(CO)_2(L-L')_2$ (L-L' = unsymmetric, bidentate phosphines such as 1-dimethylphosphine-2-diethylphosphinoethane) complexes has been studied by ³¹P NMR.³⁰ They suggest a monocapped trigonal prismatic structure with equal amounts of cis and trans isomers giving an AA'BB' spectrum. Interconversion of cis and trans isomers is postulated to occur through the pentagonal bipyramidal intermediate.³⁰

(I)

Reactions at phosphorus ligands coordinated to Group VI carbonyls have been observed. Reaction of $Cr(CO)_5$ PRCl₂ with Fe₂(QO)₉ leads to an interesting phosphorus metallocycle.³¹

$$(11)$$

$$C_{6}H_{5} - P - Cr(CO)_{5}$$

$$(11)$$

$$(CO)_{4}Fe - Fe(CO)_{4}$$

The crystal structure was reported.³¹ The synthesis of 1-diphenylphosphinylalkylidenetriphenylphosphoranepentacarbonylchromium was reported from $(C0)_{r}Cr(PØ_{2}C1)$.³²

$$(CO)_{5}CrP\emptyset_{2}C1 + Et_{3}P:CHR \rightarrow (CO)_{5}Cr[P\emptyset_{2}CR:PEt_{3}]$$
(11)
R = H, Me

The normally unstable tris(amino)-phosphine ligand has been prepared in a complex with $M(CO)_5$ (M=Cr,Mo,W).³³

210

$$(co)_{5}^{MPC1}_{3} + 6NH_{3} \rightarrow (co)_{5}^{MP(NH_{2})}_{3} + 3NH_{4}^{C1}$$
 (12)

Characterization by IR, NMR, and mass spectra indicate the same binding properties as $P(NMe_2)_3$.³³ In complexes of molybdenum, $Mo(CO)_4(PØ_2CI)_2$, the coordinated chlorodiphenylphosphine ligand was shown to react with alcohols, amines, and thiols, leaving monodentate P-donor ligands, $PØ_2X$.³⁴ A series of reactions of these complexes were carried out, the most interesting is below.³⁴

Complexes with metal-nitrogen coordination have been observed in several classes of nitrogen ligands. Diazene, hydrazine, and ammonia complexes with $W(CO)_5$ were prepared by reactions of $W(CO)_5$ THF.³⁵

$$W(C0)_{5}THF + N_{2}H_{4} \rightarrow [(C0)_{5}W]_{2}N_{2}H_{4} + (C0)_{5}WN_{2}H_{4}$$
(14)

$$\Rightarrow \text{ oxidation}$$

$$[(C0)_{5}W]_{2}N_{2}H_{2}$$

The reactions were also accomplished with substituted derivatives (PØ₃ and PMe₃) although the product stability was reduced.³⁵ All of the complexes undergo base catalyzed H-D exchange yielding N-D species. The reaction of diazene was much more rapid than the hydrazine or ammonia complexes. The diazene complex disproportionated to hydrazine and free N₂.³⁵ The reaction of a thiocyanate complex with methyl fluorosulphonate produced coordinated methylthiocyanate.³⁶

$$[N(P\emptyset_{3})_{2}][M(NCS)(CO)_{5}] + SFO_{2}(OMe) - M(CO)_{5}(NCSMe)$$
(15)
$$M = Cr.W$$

X-Ray crystallography confirmed the sequence Cr-N-C-S-Me. The Cr is octahedral

References p. 286

with the trans CO having a shorter Cr-C bond and longer C-O bond than the cis CO's, consistent with the lower π -acceptor capability for MeSCN. The C-S-C angle is 98.7° very similar to the free ligand.³⁶ Reaction of the nitrile ligand in Cr(CO)₅NCR with \emptyset_3 P=CH₂ has been reported.³⁷

$$(CO)_5 CrNCR + \emptyset_3 P = CH_2 \rightarrow (CO)_5 CrNH=CH-CH=P\emptyset_3$$
 (16)

The reaction of mixed amine tricarbonyls of molybdenum with Br_2 and I_2 has been observed. 38,39

$$\begin{aligned} &\text{Mo(CO)}_{3}\text{LL'} + \text{Br}_{2} \rightarrow [\text{Mo(CO)}_{3}\text{LL'Br}]\text{Br}_{3} \end{aligned} \tag{17} \\ &\text{Mo(CO)}_{3}\text{LL'} + \text{I}_{2} \rightarrow \text{Mo(CO)}_{3}\text{LL'I}_{2} \\ &\text{L = o-phenanthroline (o-phen) and bipyridine (bipy)} \\ &\text{L' = butylamine, piperidine, etc.} \end{aligned}$$

The complexes were characterized by IR and NMR. 38,39 Nitrene ligands have been synthesized by the interaction of aryl azides with tungsten complexes. 40 The aryl azides insert into W-P and W-H bonds.

$$WBr_{2}(CO)_{3}(PØ_{3})_{2} + @N_{3} \Rightarrow WBr_{2}(CO)_{3}(@N_{3}PØ_{3})$$

$$WH(CO)_{2}(NO)(PØ_{3})_{2} + @N_{3} \Rightarrow W(@N_{3}H)(CO)(NO)(PØ_{3})_{2}$$
(18)

On the basis of IR and ¹H NMR, the following structures were predicted.

III

I۷

Several dinitrogen compounds have been prepared, primarily with molybdenum. George has reported a direct one-step synthesis of bis-(dinitrogen) complexes of Mo(0) from $MoCl_5$.

$$MoC1_5 + N_2 + PR_3 \xrightarrow{Na/Hg} Mo(N_2)_2(PR_3)_4$$
 (19)

The yield is up to 72% and is most effective for bisphosphino ligands.⁴¹ The reactions of bis(dinitrogen)bis(diphenylphosphinoethane) molybdenum with ethyl chloroformate and benzylpropionate have been reported.^{42,43} The reaction with benzylpropionate causes decarbonylation to $Mo(N_2)(CO)(diphos)_2$. Treatment of this complex with argon leads to a five coordinate complex.⁴²

$$Mo(N_2)(CO)(diphos)_2 \xrightarrow{Ar} Mo(CO)(diphos)_2$$
(20)

The structures of both complexes have been determined. There is a very short Mo-H interaction in the position trans to CO in the five-coordinate complex. 43

Reaction of trans-Mo(N₂)(RCN)(dppe)₂ and \emptyset COC1 was reported to give MoC1(N₂CO \emptyset)-(dppe)₂.⁴⁴ A crystal structure showed the Mo-N-N to be linear and less than a double bond.⁴⁴ Arenediazo derivatives of o-phenylenebis(dimethylarsine)tetracarbonylmolybdenum and tungsten were synthesized by reaction with (p-RC₆H_aN₂)(BF_a).⁴⁵

$$M(das)(CO)_{4} + (p-RC_{6}H_{4}N_{2})(BF_{4}) \rightarrow M(das)(CO)_{3}(N_{2}C_{6}H_{4}R)^{+} BF_{4}^{-} (21)$$

$$As \emptyset_{4}C1$$

$$M(das)(CO)_{2}C1(N_{2}C_{6}H_{4}R)$$

The tricarbonyl compound was postulated to be the facial isomer on the basis of IR data. 45

VII

Several routes to isocyanide complexes of Cr, Mo, and W were reported last year. By substitution of the CO from the hexacarbonyl, King and Heckley prepared a series of α -methylbenzylisocyanide complexes.⁴⁶ They prepared LM(CO)₅, cis-L₂M(CO)₄, and fac-L₃M(CO)₃ for M=Cr, Mo, W. Use of pure enantiomers led to optically active complexes; rotation by the bis-substituted complex is twice that of the mono-substituted suggesting that the metal has no effect on the asymmetric carbon.⁴⁶ Seven-coordinate complexes with t-butylisocyanide have been prepared by oxidative-addition to the hexacarbonyl (Mo(CO)₆ and W(CO)₆) resulting in complete replacement of the CO's.⁴⁷

$$Mo(CO)_{6} + I_{2} + 7 RNC \rightarrow [(RNC)_{7}Mo]I_{2} + 6CO$$
 (22)

A crystal structure of $[Mo(t-C_4H_9NC)_6Br]^+$ showed a capped trigonal prism with the bromide capping. NMR (¹H and ¹³C) indicates fluxional behavior.⁴⁷ Replacement of the dinitrogen in bis(dinitrogen)bis(diphenylphosphin0ethane) molybdenum and tungsten gave a series of bis-substituted isocyanide complexes.⁴⁸

$$M(N_2)_2(diphos)_2 + 2RCN \rightarrow M(RCN)_2(diphos)_2$$

$$M = Mo, W \qquad R = Me, t-Bu, \emptyset, etc.$$
(23)

The isocyanides are trans in the product. The infrared frequency, 1800-1850 cm^{-1} , is very low, approaching that of bridging isocyanides.⁴⁸

Organometallic complexes containing metal-sulfur bonds have been reported

)

for Cr, Mo, and W. A number of sulfide and sulfoxide complexes of dihydroand tetrahydro-thiophene with chromium pentacarbonyl were prepared and characterized.⁴⁹ IR and NMR suggest binding of the sulfide to chromium but the results were ambiguous for sulfoxides. The crystal structure of 2,5-dihydrothiophene-1-oxide chromium pentacarbonyl was determined.⁴⁹

The reaction of thicketones with ditungsten dianions has led to sulfur co-ordination. 50

$$W_2(CO)_{10}^{-2} + R R' C=S \rightarrow W(CO)_5$$

R, R' =
$$\emptyset$$
, p-CH₃^{OC}₆H₄, p-CH₃^C₆H₄, C₁₀H₁₄, C₁₀H₁₆ (24)

These compounds were prepared in good yield and characterized by IR and NMR.⁵⁰ Sulfur bonded monothio- β -diketone complexes, RCSCHOCR, have been studied (R = CH₃) in the complex M(CO)₅L^{-.51} L is monodentate, and coordinated through the sulfur as indicated by ¹H NMR and IR. A crystal structure was done on tetraethylammonium pentacarbonyl-[1,1,1-trifluoro-4-(2-thienyl)-4-thioxobutan-2-onato-S]tungstate (0).⁵¹

There is very little distortion of the metal carbonyl framework.⁵¹ A rather unusual sulfur ligand displaces THF in Cr(CO)₅THF.52-53 The crystal structure

XI

shows a quite short Cr-S bond suggesting that $SFeCo_2(CO)_9$ is a strong sigma donor and pi acceptor ligand. Pentacarbonyl complexes of Mo and W with another unusual sulfur ligand $[C_5H_5Cr(SCMe)_3]_2S$, were also reported.⁵⁴

Complexes of stannyl and germyl ylide complexes of the metal carbonyls were reported. DuMont has reported reactions of $W(CO)_5(SnCl_2-THF)$ with P(t-Bu)₃ leading to $W(CO)_5(SnCl_2-P(CMe_3)_3)$ which was characterized by ³¹P and ¹¹⁹Sn NMR⁵⁵ and reaction with (CH₃)₃Si-P(t-Bu)₂ leading to $W(CO)_5(SiCl_2-(P(t-Bu)_2))$ which was studied by IR.⁵⁶ The reaction of $M(CO)_5(GeCl_2-THF)$ (M = Cr, W) with two equivalents of $(CH_3)_3SiSR$ (R = methyl, mesitylene) was also reported.⁵⁷

 $M(CO)_{5}(GeC1_{2}-THF) + 2(CH_{3})_{3}SiSR - (CO)_{5}CrGe + THF + (CH_{3})_{3}SiC1 (25)$

Carbenes and carbynes

<u>Carbenes</u>. Several interesting carbenes were synthesized in 1978. The synthesis of cycloheptatrienylidene tunsten pentacarbonyl was reported.⁵⁸

Very low IR stretching frequencies for the CO's indicate a negative charge on the W and thus a positive charge on the ring.⁵⁸ The synthesis of carbenes by reactions of pentacarbonyl metal dianions and cyclopentadienyl tricarbonyl anions with dichloro compounds (chloromethylene)dimethylammonium chloride was described.⁵⁹

$$Na_2M(CO)_5 + [N(Me)_2(CHC1)]C1 - (CO)_5MCH(NMe_2) + 2NaC1$$
 (27)
 $2Na[C_5H_5M(CO)_3] + [N(Me)_2(CHC1)]C1 - [Cp(CO)_3MCH(NMe_2)][CpM(CO)_3]$
 $M = Cr Mo W$

The first reaction is simple salt elimination while the second is salt elimination with oxidative addition giving a cationic carbene complex.⁵⁹ The quantitative addition of $(CH_3)_3P$ = $CHSi(CH_3)_3$ to coordinated carbon monoxide on the hexacarbonyls led to trimethylphosphoranediyl(trimethylsiloxy)carbene complexes.⁶⁰

$$M(CO)_{6} + (CH_{3})_{3}P = CHSi(CH_{3})_{3} - (CO)_{5}M = C \begin{pmatrix} OSi(CH_{3})_{3} \\ C = P(CH_{3})_{3} \end{pmatrix}$$

 $M = Cr, Mo, W$
(28)

These complexes were characterized by IR and NMR spectroscopy.⁶⁰ Fluoride abstraction by SbF_5 from CpMo(CO)₃CF₃ has led to the first fluorocarbene complex.⁶¹

$$CpMo(CO)_{3}CF_{3} + SbF_{5} - [CpMo(CO)_{3}CF_{2}]SbF_{6}$$
(29)

Although this complex could not be isolated it was identified by spectroscopic techniques including $^{19}\mathrm{F}$ and $^{13}\mathrm{C}$ NMR. 61 Lappert and Shaw synthesized bis-(ethylthio)-carbene complexes of chromium and tungsten. 62

(26)

$$M(CO)_{5}NCMe + Na(tosNNC(SEt)_{2}) \rightarrow M(CO)_{5}(C \qquad) \qquad (30)$$

tos = MeC₆H₄-p-SO₂, M = Cr, W

The complex, $(C0)_5$ CrNCN $(C_2H_5)_2$, was prepared by a reaction that probably proceeded through a carbene intermediate, $(C0)_5$ CrC , before re-N $(C_2H_5)_2$ arranging to the nitrogen coordinated ligand.⁶³ A crystal structure was reported showing the linear Cr-N-C-N linkage.⁶³

Reactions of Group VI metal carbenes have led to a variety of complexes. Treatment of $(CO)_5W=CØ(\emptyset)$ with cyclopentanone in n-hexane led to the ringopened product $(CO)_5W = C(OEt)[(CH_2)_3CH=CØ(\emptyset)$, which was isolated and characterized.⁶⁴ Stereoselective synthesis of condensed aromatic ligands from reactions of pentacarbonyl(carbene)chromium complexes with alkynes was reported.⁶⁵

Pentacarbonylchromium complexes with substituted phenyl, naphthyl-, furyl, thienyl, and cyclopentenylcarbene ligands reacted with alkynes (tolan and l-pentyne) in a strongly stereoselective way to give substituted naphthol, phenanthrene, benzofuran, benzothiophene, and indan ligands coordinated to a tricarbonyl chromium fragment.⁶⁵ The reaction of (2-furyl)phenyl carbene complexes with tolan led exclusively to naphthol complexes showing that the phenyl ring is preferrably annellated with respect to the furyl and naphthyl rings.⁶⁵ Casey et al. have reported the addition of hydride to pentacarbonyl-tungstenmethoxyphenylcarbene.

$$(CO)_{5}W = C \underbrace{C_{6}H_{5}}_{C_{6}H_{5}} + K^{+}HB(OCH(CH_{3})_{2})_{3}^{-} \rightarrow (32)$$

$$(CO)_{5}W^{-}C \underbrace{C_{6}H_{3}}_{C_{6}H_{5}}$$

A crystal structure determination of the product, tetraethylammonium (α -methoxybenzyl)pentacarbonyltungstate, showed the W-C bond to be 2.34 Å, somewhat longer than a normal W-C bond.^{66a} The barrier to rotation about the phenyl ring - benzylic carbon single bond was evaluated from temperature dependent NMR spectra. The value of 8.7 kcal/mole was attributed to a destabil-ization of the transition state both sterically and electronically.^{66a} Diphenylcarbene tungstenpentacarbonyl was reported to react with cyclic enolethers cleaving the olefinic bond in a possible model for olefin metathesis.^{66b}

$$(c0)_5 W = C \swarrow_g + C \bigotimes_2 W(CO)_5$$

(33)

A crystal structure of the product shows no coordination from the double bond to the tungsten. 66b Cyclobutenone compounds have been synthesized by reaction of alkynes with chromiumpentacarbonyl carbene. 67

The Cr(CO)₃ was interpreted as coordinated to the phenyl ring by the shift in the NMR.⁶⁷ A similar reaction gives Cr(CO)₆ and another cyclobuteneone compound.⁶⁷

Carbonyl insertion into a metal carbene bond has been suggested in the reaction converting the hexacarbonyls of chromium and tungsten into tetracarbonyl-(carbene-thio) complexes.⁶⁸

 $M = Cr, W, R = Me, \emptyset, R^* = \emptyset, R^* = H, Et$

These complexes were studied by IR, electronic spectra, NMR (1 H and 13 C),

and mass spectra.68

<u>Carbynes</u>. Reports of syntheses and reactions of group VI carbynes have greatly increased in 1978. Clark and Schrock reported the reaction of neopen-tyllithium with tungstenhexachloride.⁶⁹

$$WC1_6 + 6 LiCH_2CMe_3 \longrightarrow W(CH_2CMe_3)_3(\equiv CCMe_3)$$
 (37)

A similar product was observed in the corresponding reaction of $MoCl_5$. Both products are apparently dimers. The reaction of the tungsten neopentylcarbyne with two moles of $P(Me)_3$ led to an unusual alkyl, carbene, and carbyne complex (alkyl, alkylidene, and alkylidyne in Schrock's nomenclature), $W(CCMe_3)(CHCMe_3)-(CH_2CMe_3)(PMe_3)_2$.

XII

Me₃C^H_H H

Fischer has continued his excellent work on carbynes, primarily tungsten carbynes. The structures of the complexes $X(CO)_4 W(CCH_3)$, X = CI, Br, I, were reported.⁷⁰ Normal octahedral coordination was observed with X trans to the carbyne carbon. The W-C distances were 1.77 Å and 1.82 Å for the iodide and bromide respectively.⁷⁰ Reaction of the phenylcarbyne analogue, $Br(CO)_4 W(CC_6H_5)$, with bis(diphenylarsino)methane (dam) proceeded as follows:⁷¹

In these complexes dam is a monodentate ligand. The substitution is quite facile suggesting that the carbyne accelerates the reaction. A dimer was also isolated and assigned the following structure based on IR and NMR data.⁷¹

XIII

The reactions of trans-X(CO)₄M(CR) with $P(CH_3)_3$ suggest the route of accelerated substitution is through an ylide complex.⁷²

$$X(CO)_4 Cr \equiv CR + P(CH_3)_3 \xrightarrow{-60^\circ} X(CO)_4 Cr = C \xrightarrow{P(CH_3)_3} R$$
 (39)

$$x(c0)_4$$
 M=CR + 2P(CH₃)₃ $\xrightarrow{-60^{\circ}}$ $x(c0)_3$ (P(CH₃)₃)M=C R

M=Mo, W, X=Cl, Br, I, R=CH₃, CH₂C₆H₅, C₆H₅, etc.

At higher temperatures two CO's are substituted by $P(CH_3)_3$ in the tungsten complex.⁷² An optically active carbyne complex, $(-)Br(CO)_4Cr(C_{11}H_{19})$ was prepared by the following series of reactions.⁷³

The crystal structure was reported with the absolute configuration; the Cr-C bond length was 1.49 Å.⁷³ Nucleophilic substitutions on trans-tetracarbonyl- (organylcarbyne)tetrafluoroborato complexes of Cr and W with PØ₃, CN⁻, and SCN⁻ have been reported to give displacement of BF_4^- leading to the following complexes.⁷⁴

trans-SCN(CO)₄MCR $M = Cr, W, R=CH_3, \emptyset$ trans-NC(CO)₄MCR $M = Cr, W, R=CH_3, \emptyset$ [trans-(\emptyset_3 P)(CO)₄WC \emptyset]⁺ BF₄⁻ [trans-(\emptyset_3 P)(CO)₄CrCCH₃]⁺ BF₄⁻

The first product was assigned as an isotniocyanate by IR.⁷⁴ Fischer and coworkers synthesized interesting ferrocenylcarbyne complexes from the analogous carbenes.⁷⁵

The structure of $Br(CO)_4 CrC - C_5 H_4 FeC_5 H_5$ was determined giving a Cr-C bond

(40)

length of 1.71 Å, normal octahedral coordination around Cr, and normal geometry for ferrocene.⁷⁵ Trans-halogeno-tetracarbonyl-dialkylaminocarbyne complexes were synthesized from the alkoxy-carbene by reaction with boron halides.⁷⁶ The crystal structure of the diethylamino complex was determined by X-ray diffraction.⁷⁶

Distances are in A

XIV

The cationic carbyne complex, $[(CO)_5Cr(CNEt_2)][BF_4]$ was shown to react with PMe₃ followed by cleavage of the metal carbon bond leading to the cationic half-ylide $[Et_2N-C(PMe_3)_2][BF_4]$. A mechanism was proposed for this reaction.^{77a}

Aromatics and cyclopentadienyls

<u>Aromatics.</u> Metal atom vaporizations have been the primary new means for synthesis of arene complexes. A new technique for the synthesis of bisarenes was reported involving vaporization of K atoms into a stirred solution of MoCl₅ in THF in the presence of an arene (toluene or methylnaphthalene).^{77b}

$$MoCl_5 + Arene + K \xrightarrow{THF} Mo(Arene)_2$$
 (42)

The more normal cocondensation of Cr atoms with arenes led to only the bisarene, Cr(arene)₂, with no indication of any other product at 77°K or 10°K.⁷⁸ Two studies of the condensation of α,ω -diphenyl alkanes and Cr atoms were reported.^{79,80} Gladysz and coworkers observed only one product⁷⁹ while Nesmeyanov and coworkers obtained mixtures which were separated by preparative thin

n = 1, 4

XV

layer chromatography.⁸⁰

XVI

These products were characterized by elemental analyses, mass spectra, and EPR of the iodides. 80 The condensation of Cr and [2.2] paracyclophane produced several compounds as shown below. 81

The first bis arene tunsten hydride was synthesized by cocondensation of benzene and tungsten followed by protonation with dilute HCl solutions.⁸² Addition of PF_6 causes precipitation of the hydride as a salt.⁸²

$$W(g) + C_6 H_6 \longrightarrow (C_6 H_6)_2 W \longrightarrow (C_6 H_6)_2 W H^+$$
 (43)

Two novel arene complexes of chromium have been synthesized by reaction with $Cr(CO)_6$. The reaction of diarylmethanes with two equivalents of $Cr(CO)_6$ gave products with both arene rings π -coordinated.⁸³ Protonation leads to

(44)

carbonium ions stabilized by coordination to the Cr. The blue carbonium salts are carbon electrophiles. ¹³C NMR and IR indicate delocalization of the positive charge onto the Cr atoms.⁸³ Reaction of 4-cyclohexylphosphorin with $Cr(C0)_{6}$ results in coordination through both the heterocyclic aromatic ring and through the phosphorus.⁸⁴ The structure was deduced by IR, NMR, and mass

spectra. The composition of organic impurities present in $(Et\emptyset)_2^M$ (M = Cr,Mo), prepared by Friedel-Crafts reaction was determined by GC, IR, and mass spectrometry. The impurities arise in the transalkylation stage with EtØ under the reaction of AlCl₂.⁸⁵

A number of complexes of bicyclic species have been reported. The reaction of $Cr(CO)_6$ with cis- and trans-1,3-dimethylindan-5-amine produced the tricarbonylchromium complex.⁸⁶

The trans isomer formed two diastereomers in equal amounts indicating no preference by interaction with the amine.⁸⁶ The reaction of $Cr(CO)_6$ with arenotropones has also been observed.⁸⁷

(47)

The coordination of the chromium tricarbonyl varies with the arenotropone used.⁸⁷ The conversion from n^6 - to n^5 -coordinated indenyl and fluorenyl complexes were studied by Nesmeyanov and coworkers.⁸⁸

They prepared $n^5-c_{13}H_9(CO)_3Cr^-$ and $n^5-c_9H_7(CO)_3M^-$, M = Cr, Mo, W, by deprotonation. Methylation and protonation led to $n^5 \rightarrow n^6$ although for Mo and W stable methyl complexes are formed and for W a stable hydride was formed. Mechanisms were postulated for each reaction.⁸⁸ The structure of 1-methyl-3,5-diphenylthiabenzene 1-oxide tricarbonylchromium, -molybdenum, and -tungsten have been elucidated.⁸⁹

M = Cr, Mo, W

The ring was non-planar, but there was no evidence of sulfur coordination.⁸⁹ Benzo-1,2,3,6-diazadiborines were shown to react with $Cr(CO)_6$ giving exclusive coordination through the benzo ring.⁹⁰

These complexes were studied by NMR (1 H, 13 C, and 11 B) indicating that this ligand has better donor properties than benzene.⁹⁰ A large series of complexes with possible competition between benzo groups and heterocycles show exclusive coordination through the benzo ring, by NMR (1 H and 11 B), IR and mass spectra.⁹¹

Reactions. Photochemical reaction of $(arene)Cr(CO)_3$ with fulvenes resulted in quantitative displacement of the arene by the fulvene.⁹²

(50)

(49)

Photochemical reaction of $(arene)Cr(CO)_3$ with CS₂ resulted in CO displacement and formation of a carbon disulfide complex.⁹³

$$\operatorname{ArCr}(\operatorname{CO})_{3} + \operatorname{CS}_{2} \xrightarrow{h_{v}} \operatorname{ArCr}(\operatorname{CO})_{2} \operatorname{CS}_{2} \xrightarrow{\operatorname{PMe}_{3}} \operatorname{ArCr}(\operatorname{CO})_{2} \operatorname{CS} (51)$$

Further reaction with PMe₃ produce a thiocarbonyl, $ArCr(CO)_2CS$. The infrared spectrum shows very little difference in $ArCr(CO)_2CS$ and $ArCr(CO)_3$ in the carbonyl stretching region; The CS stretch occurred at 1190 cm^{-1.93} Another photochemical reaction of $ArCr(CO)_3$ was reported which resulted in displacement of CO by CN^{-.94}

A crystal structure determination showed the final product to be a coordinated isocyanide formed by reaction of R'X with coordinated cyanide.⁹⁴ Reaction of $(C_6H_6)Cr(CO)_2S(CH_3)_2$ with CH_3SO_3F formed a cationic complex with a sulfonium cation coordinated, $[(C_6H_6)Cr(CO)_2S(CH_3)_3]^+ SO_3F^-$.⁹⁵

Reactions of the coordinated arenes on Groups VI metals were observed in a few cases. Rausch and Gloth reported the preparation of $(n^6$ -phenyllithium)-tricarbonylchromium and reactions of this complex.⁹⁶

Reaction of the phenyllithiumchromiumtricarbonyl and organic halides, RX (R = COOH, Si(CH₃)₃, C(0)CH₃, P(C₆H₅)₂) leads to substitution on the benzene.⁹⁶

230

Coupling reactions were also observed as shown below with pyridine.⁹⁶

Dieckman condensation of bis(ethyl- β -phenylpropionate) chromium led to [5] dibenzenechromocenophane-2-carbethoxy-3-one.⁹⁷ Condensation of bis(benzal-dehyde)chromium with ethylacetate produced bis(ethylcinnamate)chromium which was hydrogenated to bis(ethyl- β -propionate). This reacts with KH to cyclize.⁹⁷

The product was characterized by mass spectroscopy.⁹⁷ Stereospecific ring expansion of arenechromium tricarbonyl complexes with $\text{OCH}_2\text{Cl-Li}(N(\text{Me}_2\text{CH})_2)$ gave 2- or 3-substituted cycloheptatriene derivatives still coordinated to the chromium tricarbonyl group.⁹⁸

<u>Cyclopentadienyls</u>. The reaction of chromocene with cyclooctatriene (COT) produced a dichromium complex, $(CpCr)_2C_8H_8$.⁹⁹ It was postulated that the COI opened to an eight carbon chain and coordinated to each Cr with both sigma and π bonds.

XVIII

Reaction of this complex with CO gave $(CpCr)_2(CO)_5$ and cyclooctatriene.⁹⁹ Photolyses of Cp_2MH_2 (M= Mo, W) caused rearrangements leading to several products.¹⁰⁰

$$\begin{array}{ll} (Cp)_{2} MoH_{2} & \frac{h\nu}{benzene} & [(n^{5}C_{3}H_{5})(\mu - (n^{1}:n^{5}-C_{5}H_{4}))Mo]_{2} \\ (Cp)_{2} WH_{2} & \frac{h\nu}{Et_{2}0} & [(Cp)_{2} W(H)(C_{2}H_{4})]PF_{6} \\ & + \ cis \ and \ trans \ [(n^{5}-C_{5}H_{5})(\mu - (n^{1}:n^{5}-C_{5}H_{4}))WH]_{2} \end{array}$$

The complexes are catalysts for the deoxygenation of epoxides.¹⁰⁰ Green and Simpson reported several reactions of bicyclopentadienylmolybdenum.¹⁰¹

Also reported were reactions with 1,2 dibromoethane, and I_2 . The iodide complex reacted with NaSR to give sulfur derivatives.¹⁰¹ Photolysis gave a complex of the formula $C_{20}H_{18}Mo_2$.¹⁰¹ The formation of σ -alkyl- π cyclopenta-dienyl complexes with the tricarbonyls was observed.¹⁰²

From ¹³C NMR it was concluded that the three-membered ring was completely opened. ¹⁰² The decomposition of $Cp(CO)_3W(n^2 - (CpMn(CO)_3))$ has been observed to produce $CpMn(CO)_3$, $(CpW(CO)_3)_2$, and a product with two $Cp(CO)_3W$ groups coordinated to the Cp ring of a single $CpMn(CO)_3$. ¹⁰³ Reaction of $(CH_3CN)_3Cr(CO)_3$ with azulene afforded the first azulene derivative of chromium-hexacarbony1.

The $Cr(CO)_3$ is coordinated only to the five-membered ring.¹⁰⁴ The methyl substituted complex reacts with CH_3Li to give tricarbonyl(1,7-10-n-2,4,6,6 tetramethylbicyclo[5.3.0]deca-2,4,7,9 tetraen-1, yl)-chromate ion.¹⁰⁴

Reactions of the cyclopentadienyltricarbonyl metal halides have yielded

several new cyclopentadienyl complexes. King and Gimeno prepared complexes of the strong pi-accepting ligand, methylaminobis(difluorophosphine), with the ligand replacing either one or two CO's.¹⁰⁵ The reaction of CpMo(CO)₃Cl wth pyridine-(2)-carboxylic acid thioamides gave the optically active neutral complexes CpMo(CO)₂LL* with LL* coordinated by pyridine-N and thioamide-S.¹⁰⁶ The diastereomers can be separated by chromatography and characterized by NMR.

$$CpMo(CO)_{3}C1 + CH_{3}N(PF_{2})_{2} \longrightarrow CpMo(CO)_{2}((PF_{2})_{2}NCH_{3})C1$$

$$CpMo((PF_{2})_{2}^{+}NCH_{3})_{2}C1$$
(61)

$$CpMo(CO)_2NO + CH_3N(PF_2) \longrightarrow CpMo(NO)((PF_2)_2NCH_3)$$

Racemization of the isomers occurred at 90°C.¹⁰⁶ Complexes of the type $[M(Cp)-{HC(N-P-tolyl)_2}(CO)L]$, (M = Mo, W) $(L = PØ_3, AsØ_3, SbØ_3, P(OØ)_3, P(OCH_3)_3)$ were prepared by reaction of $[M(Cp)(CO)L_2Cl]$ with potassium N,N'-di-p-toly-formamidine.¹⁰⁷ These complexes were characterized by NMR (¹H, ¹³C, ³¹P) and IR and the bonding of metal-to-formamidine was discussed.¹⁰⁷ Reaction of CpM(CO)_3Cl with xanthate and thioxanthate ions leads to either dicarbonyl or tricarbonyl products depending on the time of reaction.¹⁰⁸

$$CpM(CO)_{3}C1 \xrightarrow{+S_{2}CX^{-}}_{-C1^{-}} CpM(CO)_{3} \xrightarrow{S}_{CX}^{-} \xrightarrow{-C0^{-}}_{-C0^{-}} (62)$$

$$CpM(CO)_{2}S \xrightarrow{-C-X}_{-X}$$

$$X = OR, SR$$

Possible mechanisms are discussed with two paths probably involved, one with C1⁻ displacement by xanthate (thioxanthate) and the second with C0 displacement. ¹⁰⁸ Chloride abstraction by trimethylsilicon (tin) led to 1,3 diaryl-triazenido-cyclopentadienyl-molybdenum dicarbonyl. ¹⁰⁹

$$CpMo(CO)_{3}C1 + (p-XC_{6}H_{4})_{2}N_{3}Sn(CH_{3})_{3} \longrightarrow$$

$$(p-XC_{6}H_{4})_{2}N_{3}Mo(CO)_{2}(Cp) + Me_{3}SnC1 + CO$$
(63)

The triazene is apparently a three-electron donor.¹⁰⁹ Octahydrotriborate complexes of molybdenum and tungsten were prepared by reaction of $CpM(CO)_3 X$ with tetramethylammoniumoctahydrotriborate.¹¹⁰

$$CpM(CO)_{3}X + (CH_{3})_{4}NB_{3}H_{8} \longrightarrow CpM(CO)_{2}B_{3}H_{8}$$
 (64)
M = Mo, W

The compounds were investigated by proton and ¹¹B NMR.¹¹⁰

234

Reaction of cyclopentadienyltricarbonyl molybdenum hydride with biscyclopentadienyltin produced $HSn[Mo(Cp)(CO)_3]_3$.¹¹¹ Reactions at the tin center were investigated. Synthesis and stereochemistry of σ -propargylic molybdenum complexes coordinated by a phosphine or a phosphite ligand were described.¹¹² The complexes, CpMo(CO)₂L(CH₂C=C-R) (L=PØ₃, P(OØ)₃, P(OMe)₃) (R = H, Me, Ø), react to give π -ally! complexes. An acid catalysis was observed and a reaction scheme proposed.¹¹² Reaction of the cyclopentadienylcarbonyl anions with thiobenzophenones under phase transfer conditions produced fulvenes and the cyclopentadienyl tricarbonyl dimer.¹¹³

Triphenylphosphine substituted anions, $CpM(CO)_2PØ_3$, reacted with tetrakis-(trifluoromethyl)allene leading to the sigma-bonded complex.¹¹⁴

$$(F_{3}C)_{2}C=C=C(CF_{3})_{2} + CpM(CO)_{2}PØ_{3}^{-} \xrightarrow{THF}_{-70^{\circ}} Cp(CO)_{2}(PØ_{3})M-C-C-C+G_{3}^{-}$$
 (66)
 $C(CH_{3})_{2}^{-}$
 $M = MO_{3} W$

The alkyl complex produced an allyl complex in refluxing pentane.¹¹⁴ A Mo formyl was prepared by reaction of LiEt₃BH with Cp(CO)₃Mo(CO₂Me) in THF at -50° C.¹¹⁵

$$Cp(CO)_{3}Mo(CO_{2}Me) + LiEt_{3}BH \xrightarrow{THF} CpMo(CO)_{2}(CHO)(CO_{2}Me)$$
(67)

Abstraction of CH_3 from $P(OCH_3)_3$ was observed by the complex $CpMo(CO)_3(EMe_2)$.¹¹⁶

E = As, Sb

Cyclopentadienyl complexes coordinated to nitrogen have been prepared including some new bis(arenediazo) complexes of Mo and W.¹¹⁷ The compound $[CpMo(N_2Ar)(N_2Ar')PØ_3]PF_6$ reacts with bidentate ligands such as 2,2' bipyridyl and o-phenanthroline yielding cis, bis diarylazo ligands.¹¹⁷ A study of amine reactions with CpW(CO)₃(CH₂COCH₃) showed that the amine attacked the coordinated CO in preference to the organic carbonyl producing CpW(CO)₂(NH₂CH₂)-(CONHCH₃).¹¹⁸ A crystal structure determination was done on this compound.¹¹⁹ The reaction of Mo and W hydrazine complexes was studied this past year.¹¹⁹

$$[CpMo(CO)_{3}(N_{2}H_{4})]C1 + L \longrightarrow [CpMo(CO)_{3}L]^{+}C1^{-}$$

$$L = P\emptyset_{3}, PMe\emptyset_{2}$$

$$[CpM(CO)_{3}(N_{2}H_{4})]C1 + acetone \longrightarrow [CpM(CO)_{3}(NH_{2}NCMe_{2})]^{+}C1^{-}$$

$$M = Mo, W$$

$$(69)$$

These reactions provide a convenient high yield synthesis of the cations. These compounds were characterized by NMR, IR, and conductivity.¹¹⁹ In addition the structure of the PF_6^- salt of the tungsten compound was determined. The hydrazone was coordinated through the amino-nitrogen rather than the expected imino-nitrogen.¹¹⁹

A trithiocarbonato complex of molybdenum was prepared by reaction of CpMo(CO) $_3^-$ with CS $_2$ and CH $_3I$.

$$CpMo(CO)_{3}^{-} + CS_{2} + CH_{3}I \longrightarrow CpMo(CO)_{2}$$

$$(70)$$

$$S_{C}^{+}$$

$$S_{C}^{+}$$

$$S_{C}^{+}$$

$$S_{C}^{+}$$

$$S_{C}^{+}$$

The fluxional behavior of bis(cyclopentadienyl)dithiocarbamatomolybdenum complexes has been investigated. ¹²¹ The compound, $[Mo(C_p)(n^1-C_5H_5)(NO)(S_2CNR_2)]^*$, (R = CH₃, Bu), was observed to undergo three independent fluxional processes, (1) 1,2 shifts of the $n^1-C_5H_5$ ring, (2) n^1-n^5 ring interchange, and (3) CN rotation of the S_2C-NH_2 group. ¹²¹ Possible mechanisms are discussed. The rotation of the aryl group in thiamidato complexes, Cp(CO)₂Mo-SC(R)NR'CR is ortho substituted aryl and R' = CH₃, C₆H₅, etc.), has been studied by ¹H NMR. ¹²² The barrier to rotation was determined from the two isomers which

differ in the relationship of C_5H_5 and the ortho substituent.¹²²

Larger Rings. A few complexes of larger rings were prepared this past year. A paramagnetic, 17-electron species, $n^7 - (C_7H_7)Mo(acac)(NCS)$, was prepared by reaction of the cationic aquo complex, $[Mo(acac)(H_2O)(n^7 - C_7H_7)]^+$ with the thiocyanate anion.¹²³ The crystal structure was determined. The reaction between tricarbonyl(tropylium)tungsten(0) and molybdenum(0) cations and iodide was studied by stopped-flow techniques to determine whether initial attack occurs at the metal, at CO, or at tropylium ion.¹²⁴ From stopped-flow spectroscopy and stopped-flow NMR data it was postulated that initial coordination of iodide to the metal occurs, iodide is transferred to C_7H_7 , acetone displaces CO, and finally I⁻ displaces acetone.¹²⁴ Cycloheptatriene W(CO)₃ has been reduced with Na.¹²⁵

$$C_7 H_8 W(CO)_3 \xrightarrow{Na} C_7 H_9 W(CO)_3^{-} \xrightarrow{CH_3 I} CH_3 W(C_7 H_9)(CO)_3$$
 (71)

This compound is analogous to $C_5H_5W(CO)_3CH_3$ and was prepared electrochemically in 80% yield.¹²⁵ Complexes with 1-pheny1-4,5-dihydroborepin were prepared by reaction with $M(CO)_4(py)_2$ (M = Cr, Mo, W).¹²⁶

<u>Olefins, acetylenes, dienes, and allyls</u>. Only a few olefin complexes have been synthesized this year. $Cis-W(CO)_4AsMe_3(olefin)$ complexes were prepared photochemically from $W(CO)_5AsMe_3$ and olefin in THF.¹²⁷ The olefins used are ethylene, dimethylmethylenemalonate, dimethylmaleate, and dimethylfumarate.¹²⁷ Olefin complexes were also prepared from PMe₃ and bisarsine complexes. These complexes were investigated by IR and NMR with the NMR data indicating hindered rotation of the olefin.¹²⁷ The barrier to rotation of ethylene in $CpW(CO)_2CH_3(C_2H_4)$ was measured by ¹H NMR.¹²⁸ This compound was prepared by photochemical substitution of C_2H_4 for CO in $CpW(CO)_2CH_2$.

$$CpW(CO)_{3}CH_{3} \xrightarrow{h_{\nu}, C_{2}H_{4}} CpW(CO)_{2}(C_{2}H_{4})CH_{3}$$
(73)

The barrier to rotation about the metal-olefin bond was reported as 59 kJ/mole.¹²⁸

Biscyclopentadienylmolybdenum (methylacetylene) was prepared by the reaction of biscyclopentadienylmolybdenumdichloride with sodium amalgam in the presence of methylacetylene.¹²⁹

 $(C_{5}H_{5})_{2}MoCl_{2} + CH_{3}C \equiv CH - \frac{Na/Hg}{l atm} > (C_{5}H_{5})_{2}Mo(CH_{3}C \equiv CH)$ (74)

The structure was postulated as a metallocycle from ¹H and ¹³C NMR.¹²⁹ Dithioalkyne complexes of molybdenum and tungsten were synthesized by the reaction of $M(CO)_3(NCMe)_3$ with $CH_3SC\equiv CSCH_3$.¹³⁰

$$M(CO)_{3}(NCMe)_{3} + CH_{3}SC \equiv CSCH_{3} \longrightarrow M(CO)(CH_{3}SC \equiv CSCH_{3})_{3} (75)$$
$$M = Mo, W$$

Also prepared was CpMCl(CH₃SC=CSCH₃)₂. These species are bonded through the triple bond with no evidence of coordination to the sulfur.¹³⁰ σ -Propargylic molybdenum and tungsten complexes were alkoxycarbonylated by alcohols, water, and thiols yielding pi-allyl complexes in most cases.¹³¹

$$CpMo(CO)_{3}(CH_{2}C=CH) \xrightarrow{ROH} CpMo(CO)_{2} \xrightarrow{V} -COR$$
(76)

The reaction of the σ -2-propynylmolybdenum complex with alcohols yielded carbenoid complexes instead of the pi-allyl.¹³¹

Synthesis and reactions of a few allyl complexes have been reported. The reaction of substituted anionic carbonyls of Mo and W with allyl halides produced a series of allyl complexes.¹³²

$$fac-[MX(CO)_{3}L_{2}] + (allyl)X \longrightarrow MX(CO)_{2}(n^{3}-RC_{3}H_{4})L_{2}$$
(77)

$$M = Mo, W L_{2} = 1,10 phenanthroline, 2,2' bipyridine$$

$$X = Cl, Br, I$$

These complexes were investigated by IR with force constant calculations on

238

several complexes.¹³² Similar allyl complexes were prepared containing β -diketonate substituents, M(CO)₂(n³-allyl)(diket)L (M = Mo, W, L = py, THF, CH₃CN, diket = acetylacetonate, etc.), for different allyls, diketones, and L's.¹³³ The molecule is fluxional at -60°C for acetylacetonate complexes, with the postulated structure as shown below.¹³³

XIX

Attack on the coordinated allyl by pyridine and phosphines in the complex $[CpMo(n^3-C_3H_5)(CO)(NO)][PF_6]$ led to the following reaction.¹³⁴

$$[CpMo(C_{3}H_{5})(CO)(NO)]^{+}[PF_{6}]^{-} + L \longrightarrow [CpMo(C_{3}H_{5}L)(CO)(NO)]^{+}PF_{6}^{-}$$
(78)
$$L = PR_{3}, NC_{5}H_{5}$$

On the basis of IR and NMR evidence coordination through the olefin was postulated with the ligand attached to the carbon as a pyridinium or phosphonium center instead of the often postulated $\eta^3 - \eta^1$ complex with L attached to the metal.¹³⁴ The reaction of bidentate arsine ligands $(\emptyset_2 \text{AsCH}_2 \text{As} \emptyset_2 \text{ and } \emptyset_2 \text{AsCH}_2 \text{CH}_2 \text{As} \emptyset_2)$ with MoX(CO)₂($\eta^3 - c_3 H_5$)(CH₃CN)₂ leads to replacement of acetonitrile instead of X and allyl as observed for monodentate ligands.¹³⁵

Only a very few papers on group VI metal polyene complexes have appeared. A complex of 5,6-dimethylene-7-oxabicyclo[2.2.1]hept-2-ene has been prepared from $Mo(CO)_3(CH_3CN)_3$.

All three of the olefin groups are apparently coordinated.¹³⁶ Detailed investigation of the IR and NMR of (diene)M(CO)₄ (M = Cr, Mo, diene = 1,3butadiene, 1,5-cyclooctadiene, and substituted derivatives) showed the dynamic behavior proceeds through a trigonal prismatic transition state.¹³⁷ The reaction of the diene, $C_7H_8Mo(CO)_4$, with Me₃CPF₂ was observed.¹³⁸

$$c_7 H_8 Mo(CO)_4 + Me_3 CPF_2 \longrightarrow cis (Me_3 CPF_2)_2 Mo(CO)_4$$

$$c_7 H_8 = bicyclo[2.2.1]hepta-2,5-diene$$
(79)

The product was isolated in greater than 90% yield. ¹³⁸

Alkyls and hydrides

The synthesis of tetrakis (2,2'-dimethyl-l-phenylethenyl)chromium (IV) was reported this year.

 $CrC1_{3}$. 3THF + 4LiCØ = $CMe_{2} = \frac{-78^{\circ}}{Et_{2}0} > Cr(CØ = CMe_{2})_{4}$ (80)

Green crystals were isolated and characterized by IR, NMR, ESR, and X-ray crystallography. The carbons were tetrahedrally arranged around Cr with no distortions. There was no evidence of multiple character to the Cr-C bonds.¹³⁹ Casey and Polichnowski prepared several tungsten alkyls by decarbonylation of the acyls or by reaction of the carbonyl halide anions with alkyl lithium species.¹⁴⁰

$$(CO)_{5}WCOR^{-} \xrightarrow{h_{0}}{-CO} (CO)_{5}WR^{-}$$

$$W(CO)_{5}Br^{-} + RLi \xrightarrow{} (CO)_{5}WR^{-}$$

$$R = CH_{3}, C_{6}H_{5}, CH_{2}C_{6}H_{5}, etc.$$
(81)

Reaction of these pentacarbonyltungstenalkyls with HCl gave RH and W(CO)₅Cl⁻.

XX
Reaction with CO and $PØ_3$ at room temperature produced acyls for all alkyls except benzyl.¹⁴⁰ Bis(methyl)molybdenum complexes were prepared by reaction of MoCl₃-3THF with dimethylmagnesium in the presence of an arene and a phosphine.¹⁴¹

$$MoCl_{3} \cdot 3THF + PR_{3} + Mg(CH_{3})_{2} + arene \longrightarrow$$

$$(CH_{3})_{2} Mo(\eta^{6} - arene)(PR_{3})_{2} \qquad (82)$$
Arene = benzene, toluene, or xylene

On the basis of IR and NMR (1 H, 13 C, and 31 P) a trans structure was assigned to these complexes. Reaction with CO produced (CH₃)₂Mo(arene)(PR₃)(CO) which forms acetone on sitting; (arene)Mo(PR₃)₃ is the Mo product. 141 Reaction of

the molybdenum acyl, CpMo(CO)₃(\mathring{C} - \mathring{C} -OCH₃), with Li[(\mathring{C}_2H_5)₃BH] at -50° in THF 0 0 resulted in formation of the formyl, Cp(CO)₂Mo(CHO)(\mathring{C} - \mathring{C} -OCH₃).¹⁴²

$$CpMo(CO)_{3}R \xrightarrow{Li[(C_{2}H_{5})_{3}BH]} CpMo(CO)_{2}(C-H)R$$
(83)

This formyl complex which could not be isolated but was characterized by NMR (12.9 δ), was formed in 17% yield.¹⁴² Syntheses of chromium pentacarbonylylid complexes have been accomplished by reaction of Cr(CO)₅THF with

$$(C_6H_5)_3 P = C < R_1^{R_1}$$
. 143

$$Cr(CO)_{5}THF + (C_{6}H_{5})_{3}P = C \begin{pmatrix} R \\ R' \end{pmatrix} \frac{-10^{\circ}C}{THF} (CO)_{5}Cr - \frac{R}{C} - P(C_{6}H_{5})_{3}$$
 (84)
 $R = R' = H; R = H, R' = C_{6}H_{5}; R = R' = CH_{3}$

The phosphorylide complex, $(C_6H_5)Cr[CH_2P(CH_3)_3][(CH_2)_2P(CH_3)_2]_2$, was isolated in low yield as an intermediate in the reaction of tetramethyl phosphonium choride and tris(lithium)hexaphenyl chromate(III).¹⁴⁴ The reaction of the tris lithium compound with phenylacetylene yields the onium-stabilized complex tris(phenylethynyl) tris(trimethylphosphonium methylide) chromium(III), $(C_6H_5C_2)_3Cr[CH_2P(CH_3)_3]_3$.¹⁴⁴

References p. 286

The reaction of CpM(CO)₃CH₃ with CO at high temperature and pressure gave $M(CO)_6$ with no evidence of acyls when studied in a high pressure IR cell.¹⁴⁵ The reaction of this complex, CpM(CO)₃CH₃ with P(CH₃)₃ gave the mono- and disubstituted products, CpM(CO)₂(P(CH₃)₃)CH₃ and CpM(CO)(P(CH₃)₃)₂CH₃ upon irradiation.¹⁴⁶

$$CpM(CO)_{3}CH_{3} \xrightarrow{P(CH_{3})_{3}} CpM(CO)_{2}(P(CH_{3})_{3})CH_{3}, CpM(CO)(P(CH_{3})_{3})_{2}CH_{3}$$
 (85)

A side reaction leads to the dimer, $Cp(CO)(P(CH_3)_3)_2M-M(CO)_3Cp$. The indenyl complex of chromium reacts to give cis- $Cr(CO)_2L_4$ exclusively. The Mo and W indenyl compounds give photosubstitution of 1 or 2 carbonyls.¹⁴⁶ Schrauzer and coworkers have shown the R group (R = CH₃ and C₂H₅) in RMo(0)₂Br(bipy) to have carbanionic reactivity.¹⁴⁷ Formation of hydrocarbons upon hydrolysis is accelerated by the presence of thiol ligands.¹⁴⁷ Insertions of SO₂ into M-C bonds have been studied. The stereochemistry of the insertion of SO₂ into threo-1,2-dideuterophenethyl compounds of tungsten (trans-(threo-WCHDCHD)W(CO)₂-(P(CH₃)₂)(Cp) was shown to yield the sulfinate with inversion of configuration.¹⁴⁸ In a series of papers on SO₂ insertions into Mo alkenyl complexes, Wojcicki and coworkers investigated the alkene-sulfinato products.¹⁴⁹⁻¹⁵¹

$$CpMo(CO)_{2}(P(OC_{6}H_{5})_{3})CH_{2}CH = CRR' + SO_{2}$$

$$CpMo(CO)_{2}(POC_{6}H_{5})_{3}) - \overset{0}{\overset{}{_{5}}} - \overset{R}{c} - CH = CH_{2} \qquad (86)$$
or
$$CpMo(CO)_{2}(P(OC_{6}H_{5})_{3}) - \overset{0}{\overset{}{_{5}}} - CH_{2} - CH = C \swarrow \overset{R}{_{R'}}$$

$$R = H, CH_{3}$$

$$R' = CH_{3}, C_{6}H_{5}$$

The stable product depends on R and R' ¹⁴⁹ Similar products are observed for insertions into CpM(CO)₃CH₂CR = CR'R" ¹⁵⁰

$$CpM(CO)_{3}CH_{2}-CR = C \xrightarrow{R'}_{R''} + SO_{2} \longrightarrow CpM(CO)_{3} - \overset{O}{\overset{G}{\overset{G}{_{0}}} - \overset{R'}{\overset{C}{_{0}}} - C \xrightarrow{R}_{CH_{2}} (87)$$
or
$$M = Mo, W \qquad CpM(CO)_{3} - \overset{O}{\overset{G}{_{0}}} - CH_{2} - \overset{R}{\overset{C}{_{0}}} = C \xrightarrow{R'}_{CH_{2}} - C \xrightarrow{R'}_{CH_{2}$$

with the product depending on R. R', R" and the metal
$$150$$

M = Mo, W

$$CpMo(CO)_{3}CH_{2}CH=CH_{2} + SO_{2} \longrightarrow CpMo^{+}(CO)_{3} - \frac{CH_{2}}{CH} - CH_{2} S = 0$$
or
$$CpMo(CO)_{3} - \frac{0}{5} - CH_{2} - CH = CH_{2}$$
(88)

The structures were assigned by IR and the conversion from the alkene-coordinated product to the sulfinato was observed. 151

The preparation of phosphine tetrahydrides of molybdenum were reported this year.¹⁵²

$$MoCl_{5} + L + KBH_{4} \longrightarrow H_{4}MoL_{4}$$
(89)
$$L = PØEt_{2}, PØ_{2}Me$$

Protonation of the tetrahydride of W, H_4WL_4 , was observed with HClO₄ and CF₃CO₂H producing [H₅WL₄]X, with the product characterized by IR and NMR.¹⁵³ Further evidence for radical mechanisms was obtained by Hoffman and Brown in a study of the thermal and photochemical substitution reactions of the tricarbonyl(cyclopentadienyl)hydrido compounds of tungsten and molybdenum.¹⁵⁴ The reaction of HW(CO)₃Cp with PBu₃ led to cis and trans products at non-reproducible rates in the dark. Photolysis of the dimer, [W(CO)3Cp]2, with HW(CO)₃Cp in the presence of ligand gave quantum yields of 1000 with the more nucleophilic ligand reacting much faster.¹⁵⁴ Irradiation of Cp₂WH₂ in thiophene or furan caused insertion of the Cp₂W unit into the heterocyclic C-H bond to give the 2-thienyl or 2-furyl complex. ¹⁵⁵ A study of the dynamics of monocapped octahedral $[MoH(CO)_2(P-P)_2]^+$ (P-P = dmpe, diphos, etc.) showed two exchange mechanisms when investigated by ¹H, ³¹P, and ¹³C NMR. ¹⁵⁶ The pairwise mechanism (observed for diphos), corresponds to rotation of H about the CO-Mo-CO axis and would constitute detection of a mono-capped octahedron $\stackrel{\checkmark}{\leftarrow}$ pentagonal bipyramid interconversion.

XXI

The non-pairwise does not involve dissociation, but the steps could not be determined. ¹⁵⁶ Reaction of $\text{Et}_4 N^+ \mu - H(M(\text{CO})_5)_2^-$ (formed by the reaction of $M(\text{CO})_6$ with NaBH₄ in EtOH reflux) with a ligand L produces $M(\text{CO})_4 L_2$, M = Cr, Mo, W, suggesting that $\mu - H(M(\text{CO})_5)_2^-$ is an intermediate in the reaction of NaBH₄, $M(\text{CO})_6$, and 2L.¹⁵⁷ Initial substitution occurs on the binuclear complex in a first order, CO dissociative process, then break-up and further substitution. No definitive evidence for the later steps were obtained although a formyl was postulated. ¹⁵⁷ The reaction of the μ -hydrido bridged molybdenum species with PØ₃ was shown to produce stereospecifically the cis species.¹⁵⁸

The reaction of the triphenylphosphine complex with ¹³CO produced stereospecifically ¹³CO labelled $[(\mu-H)(Mo(CO)_5)_2]^{-.58}$ Detailed analysis of the IR spectrum of this compound required coupling of the CO's on the two metals. Using Cotton-Kraihanzel analysis, the interaction constants were calculated for the equatorial CO's on both metals. <u>Metal-Metal bonded systems</u>. A new high yield synthesis of the dimers, $(n^{5}-RC_{5}H_{4})_{2}M_{2}(CO)_{6}$, (M = Cr, Mo, W), was reported from the reaction of $(n^{5}-RC_{5}H_{4})M(CO)_{3}$ with Fe₂(SO₄)₃.

$$(\eta^{5}-RC_{5}H_{4})M(CO)_{3}^{-} \xrightarrow{diglyme}{Fe_{2}(SO_{4})_{3}/H_{2}O} (\eta^{5}-RC_{5}H_{4})_{2}M_{2}(CO)_{6}$$
 (91)

A molybdenum hydride dimer was synthesized and characterized from reaction of Mo acetate with sodium cyclopentadienide in THF.¹⁶⁰

This product was characterized by IR and NMR. Reaction with CO leads to cleavage of the Mo-Mo bond and formation of the following product. $^{160}\,$

XXII

This product was also characterized by IR and NMR. Complexation of diene thiones to both Mo atoms has been observed by reaction with $\text{Cp}_2\text{Mo}_2(\text{CO})_6$.

XXIII

The coordination was through the pi electron of the less substituted double bond and the thiocarbonyl.¹⁰¹ Rearrangements of the complex $(CO)_4 M[As(CH_3)_2-M'(CO)_3 Cp]_2$ (M, M' = Cr, Mo, W) have led to a metal-metal bonded system with bridging $As(CH_3)_2$.¹⁶²

$$(CO)_{4}M[(As(CH_{3})_{2}-M'(CO)_{3}Cp]_{2} \longrightarrow (CO)_{5}M[\mu-As(CH_{3})_{2}]M'(CO)_{2}Cp$$
 (93)
and

 $(CO)_{5}M-As(CH_{3})_{2}-M'(CO)_{3}Cp$

The first product has a metal-metal bond but the second does not. The metalmetal bonded species are active for the catalytic polymerization of norbornadiene.¹⁶² Complexes with three sulfur atoms bridging two molybdenums have been prepared and studied.¹⁶³ Low energy barriers were observed for sulfur inversion in the complexes, $Mo_2(CO)_2L(\mu-SR)_3(n^7-C_7H_7)$, (R = CH₃, C_2H_5 , etc., L = CO, P(OCH₃)₃, etc.). Complete averaging of the R group environments was observed by ¹H NMR when L = CO, but only limited averaging for other L.¹⁶³ To further investigate this process, a crystal structure determination of $Mo_2(CO)_2(P(OMe)_3)$ (μ_2 -S(t-Bu))₃ ($n^7-C_7H_7$) was accomplished.¹⁶³

The sulfurs are bridging asymmetrically, favoring the molybdenum bound to CO and L. It was postulated that the phosphorus ligand has a dramatic effect on the SR trans, affecting the inversion process.¹⁶³

Several heterometal dimers have been synthesized this year. Methane elimination in the reaction of $(Cp)_2 Zr(CH_3)_2$ and $CpMo(CO)_3 H$ resulted in formation of a Zr-Mo bonded species, $(Cp)_2 (CH_3) ZrMo(Cp)(CO)_3$.

$$(Cp)_{2}Zr(CH_{3})_{2} + CpMo(CO)_{3}H \longrightarrow (Cp)_{2}(CH_{3})ZrMo(Cp)(CO)_{3}$$

$$(94)$$

This compound was characterized by NMR, microanalysis, and reactions with CCl_4 and dibromoethane.¹⁶⁴ A similar reaction led to $(Cp)_2NbMo(CO)_3Cp.^{165}$

$$(Cp)_2 NbBH_4 + Cp(CO)_3 Mo(Me) \xrightarrow{benzene}{Et_3 N} (Cp)_2 NbMo(CO)_3 (Cp)$$

Reaction of $(CO)_4$ M(AsMe₂Cl)₂ (M = Cr, Mo, W) with K₂Fe(CO)₄ produced complexes containing M-Fe bonds.¹⁶⁶

$$(CO)_{4}M(AsMe_{2}C1)_{2} + K_{2}Fe(CO)_{4} \longrightarrow (CO)_{4}M \xrightarrow{ASMe_{2}} Fe(CO)_{3} \qquad (95)$$

$$M = Cr, Mo, W$$

The compounds were characterized by IR and NMR.¹⁶⁶ An unusual bimetallic complex containing Fe and W, (Cp)(CO)₂W(n³-C₅H₅)(n⁵-C₅H₄)₂Fe), was prepared by the reduction of $[Cp(CO)_2W(n^3-C_5H_5(C_5H_5)_2)]I$ with sodium followed by addition of FeCl₂.¹⁶⁷ The complex was characterized by IR, ¹H NMR and mass spectrometry. The suggested structure is shown below.¹⁶⁷

Reports on two complexes containing Mo = Mo double bonds have appeared. Synthesis of $Mo_2(OR)_6CO$ by reaction of CO with the triply bonded species, $Mo_2(OR)_6$, was reported.¹⁶⁸ The crystal structure determination showed the carbonyl to occupy a bridging position.

XXVI

XXV

R = t-Bu

Further reaction with CO gives $Mo_4(OR)_{12}(CO)_4$.¹⁶⁸ Mild oxidation of the diazabutadiene complex, $Mo(CO)_4 DAB^-(DAB = diazabutadiene)$, resulted in a species postulated to have the following structure.¹⁶⁹

XXVII

 $R_1, R_2 = t-Bu \text{ or } i-Pr$

This complex showed 5 or 6 bands in the carbonyl stretching region indicating an asymmetry to the binding. 169

Several reports on complexes with triple bonds between the metals, $(CpM(CO)_2)_2$, have appeared. The reaction of $[CpCr(CO)_2]_2$ with acetylenes did not produce an addition product, but rather gave substitution for CO.¹⁷⁰

$$[CpCr(C0)_2]_2 + RC \equiv CR \longrightarrow CpCr = CrCp \qquad (96)$$

The product was characterized by IR, NMR (1 H and 13 C), and an X-ray crystal structure.¹⁷⁰ Curtis and Klinger reported reaction of bis(cyclopentadienyl-dicarbonylmolybdenum) with a number of species.¹⁷¹

$$Cp_2Mo_2(CO)_4 + L \longrightarrow trans (CpMo(CO)_2L)_2$$

$$L = P\emptyset_3, P(OMe)_3$$
(97)

$$Cp_2Mo_2(CO)_4 + I_2 \longrightarrow Cp_2Mo_2(CO)_4I_2$$
(98)

$$Cp_2Mo_2(CO)_4 + RC_2R \longrightarrow (\mu - RC_2R) (Cp_2Mo_2(CO)_4)$$
 (99)

The latter complex contains both bridging and terminal CO's. Reaction of the dijodide complex, $Cp_2Mo_2(CO)_4I_2$, with $Na_2Fe(CO)_4$ led to μ -Fe(CO)₄-($Cp_2Mo_2(CO)_4$).¹⁷¹

This compound has no bridging CO's.¹⁷¹ The reaction of $Cp_2Mo_2(CO)_4$ with acetylene was the subject of another study which led to a crystal structure.¹⁷²

The bridging acetylene and two Mo atoms are almost tetrahedral. One CO is in a semi-bridging position. The two molybdenum atoms are different probably due to steric crowding. ¹⁷² The dynamics of these complexes were studied by ¹³C and ¹H NMR. ¹⁷² The addition of allene to $Cp_2Mo_2(CO)_4$ has also been studied. ¹⁷³ The product, µ-allene-bis(cyclopentadienyl)tetracarbonyldimolybdenum, was characterized by X-ray crystallography; the structure is shown below. ¹⁷³

The NMR was invariant with temperature. The allene was strongly coordinated and could not be replaced by CO or $PØ_3$.¹⁷³ The reaction of $Cp_2Mo_2(CO)_4$ with a number of small molecules (CO_2 , NO_2 , CS_2 , CH_3CN , 1,3 butadiene, and cyanamides) has been reported.¹⁷⁴ Only the cyanamides, H_2NCN and Me_2NCN , gave a reaction; the product was characterized by an X-ray structure.¹⁷⁴

A number of other multiply bonded metal-metal systems have been studied. Possible metal-metal metatheses of the triple-bonded species, $Mo_2(CH_2SiMe_3)_6$ and $W_2(CH_2SiMe_3)_6$, were explored but no mixed product was observed.¹⁷⁵ Mixed compounds were observed in the mass spectrum for reaction of $Cp_2M_2(CO)_4$ at 80°C or photochemically at 25°C.¹⁷⁵ Preparation of an ethyl molybdenum complex with a Mo=Mo bond by reaction of LiEt with the chloromolybdenum compound¹⁷⁶ was demonstrated.

$$Mo_2Cl_2(NMe_2)_4 + 2LiEt \longrightarrow Mo_2Et_2(NMe_2)_4 + LiCl$$
 (103)

Reaction of the ethyl complex with $\rm CO_2$ led to reductive elimination with formation of a MoEMo bond. 176

$$Mo_2Et_2(NMe_2)_4 + CO_2 \longrightarrow Mo_2(O_2CNMe_2)_4 + C_2H_4 + C_2H_6$$
 (104)

X-ray and neutron diffraction of tris(cycloctatetraene)dimolybdenum and the tungsten analogue, $M_2(C_8H_8)_3$, indicate a quadruple bond between the metals, as shown below.¹⁷⁷

Preparation of a Cr=Cr species by reaction of tetra-µ-acetato-dichromium with

XXX

bis(trimethylsilylmethyl)magnesium in the presence of $P(CH_3)_3$ was accomplished. 178

$$Cr_2(O_2CMe)_4 + MgR_2 + P(CH_3)_3 \longrightarrow Cr_2R_4(PMe_3)_2$$
 (105)
 $R = CH_2Si(CH_3)_3$

Reaction of the molybdenum-acetato complex with dimethylmagnesium produced $Mo_2(Me)_4(PMe_3)_4$. Both of these compounds were studied by IR, NMR (¹H, ³¹P, ¹³C), and X-ray crystallography and apparently have metal-metal quadruple bonds.¹⁷⁸ Acidification of $Cr(C_5H_5)_2$ with $HC_2H_3O_2$ led to bis(cyclopentadienyl)-hexakis(trifluoro-acetato)trichromium.¹⁷² This compound is linear with bridging trifluoro acetate groups and cyclopentadienyl groups on each terminal chromium atom.¹⁷⁹

Chelates

Reports of chelate complexes of the Group VI metals have continued to grow this year. The work of Nesmeyanov and co-workers has provided many of the new complexes as derivatives of $ArM(CO)_3$. Photolysis of alkenylarene metal tricarbonyls for Cr, Mo, and W compounds in which the double bond is separated from the arene moiety by a two-or three-atom chain results in CO dissociation and intramolecular cyclization to give stable alkenylarenedicarbonylmetal complexes. ¹⁸⁰

Irradiation of styrenetricarbonyl-chromium and molybdenum leads to dinuclear complexes. All of the complexes were studied by IR and NMR (1 H and 13 C). ¹⁸⁰ The same type of reaction was effected with an arenephosphite chromium tricarbonyl. ¹⁸¹

By using an arene triply substituted with difluorophosphite they effected complete replacement of the CO's. $^{182}\,$

This complex was isolated in 50% yield.¹⁸² A similar synthetic technique was studied by Donnini and Shaver for alkenylarene chromium complexes.¹⁸³

For the complexes $(n^6-C_6H_5XCH_2CH=CH_2)Cr(CO)_2L$ for $L = PØ_3$, $P(0Ø)_3$, $P(0C_2H_5)_3$, and $P(CH_3)_2\emptyset$, photolysis always leads to replacement of the ligand L by the olefin, indicating that the Cr-L bond is photolabile for UV irradiation.¹⁸³

Several bidentate ligands based on phosphorus have been synthesized. Methylaminobis(difluorophosphine) complexes with Cr, Mo, and W have been prepared by King and Gimeno.¹⁸⁴

$$M(CO)_{6} + CH_{3}N(PF_{2})_{2} \xrightarrow{h\nu} M(CH_{3}N(PF_{2})_{2})_{3} + 6 CO$$
 (110)
M = Cr, Mo, W

The volatile and air-stable complex was determined as the tris(bidentate) by IR and NMR (1 H, 13 C, and 31 P). 184 Reaction of the similar ligand, 1,2 bis-(difluorophosphino)cyclohexane with the hexacarbonyls produced a different product. 185

$$M(CO)_{6} + P_{2}F_{4}C_{6}H_{10} \longrightarrow [M(CO)_{4}P_{2}F_{4}C_{6}H_{10}]_{X}$$
(111)
$$X = 1-3$$

The bidentate ligands bridge instead of chelating. It was suggested that the product selection is kinetically controlled rather than thermodynamically.¹⁸⁵ Rauchfuss has synthesized new amino-phosphine chelating agents and prepared molybdenum complexes of them.¹⁸⁶

The primary product was the disubstituted species although dinuclear complexes were also obtained.¹⁸⁶ The chelate ligands, $Me_2XM'Me_2CH_2X'Me_2$ (X, X' = N, P, As, M' = Si, Ge), were prepared and reacted with the hexacarbonyls, forming $M(CO)_4L$ (M = Cr, Mo, W).¹⁸⁷ The chemical and spectroscopic properties of this bidentate ligand were discussed in terms of bonding models.¹⁸⁷

Nitrogen base chelates were prepared by several techniques, including the reaction of amidines with tricarbonyl(chloro)cyclopentadienylmolybdenum.¹⁸⁸

 $R = Me, \emptyset, etc.$

A similar complex has been prepared by reaction of $NEt_4M(CO)_5C1$ and $KHC(NR)_2$.¹⁸⁹

$$NEt_4 M(CO)_5 C1 + K HC(NR)_2 \longrightarrow (CO)_4 M \bigvee_{N}^{N} CH$$
 (114)

 $R = \emptyset, M = Cr, Mo, W$

The anionic formamidino complexes were investigated by IR and NMR (1 H and 13 C). Reaction with PØ₃ or py led to the facial substituted product. ¹⁸⁹ The reaction of potassium N,N'-diphenylformamidine with CpM(CO)₃Cl led to two products in equal yield. ¹⁹⁰

The reactions and products were studied by IR and ¹³C NMR and a mechanism proposed for the reaction.¹⁹⁰ A ring contraction was observed in the reaction of cationic CpMo(CO)₂(chelate) complexes with methyllithium.¹⁹¹ The reaction of cationic pyridinecarbaldimine complexes with CH₃Li gave two products.¹⁹¹

(116)

The structure of the second product with $R = CH(CH_3)C_6H_5$ was determined crystallographically. Both products were characterized by IR and NMR.¹⁹¹ New Cp(CO)₂Mo chelate complexes were prepared with 2-imidoyl fragments by reaction of the sodium salt with N-methylbenzimidechloride.¹⁹²

$$NaCpMo(CO)_{3} + CH_{3}N=C(CI) \emptyset \rightarrow CpMo(CO)_{2}[C(\emptyset)N(CH_{3})C(\emptyset)N(CH_{3})]^{+} CI \qquad (117)$$

which was assigned the following structure (XXXII) based on IR and NMR data.

Protonation led to the second product (XXXIII).¹⁹² The reaction of $P(OCH_3)_3$ and $P(CH_3)_3$ with tungsten cyclopentadienyl carbonyl acetyl acetylenes led to chelate complexes.¹⁹³

256

Insertion of acetylene into carbon-Mo and W bonds has also led to chelate complexes. $^{194} \,$

$$CpM(CO)_{3}R + 2-butyne \longrightarrow Cp(CO)_{2}M \underbrace{\bigvee_{0}}_{R} Me$$

$$M = Mo, R = CH_{3}, CH_{2}\emptyset, COCF_{3}$$

$$M = W, R = CH_{3}, COCF_{3}$$
(120)

The structure was assigned from elemental analysis, mass spectra, IR and NMR. Reaction of this species with L (L = CO, CNt-Bu, CNC_6H_{11}) led to n^3 -allylic lactone complexes.¹⁹⁴ A crystal structure was done for R = CH₃, M = Mo, L = t-butylisocyanide. In the reaction of 2-butyne with the Mo(COCF₃) complex formation of an eight-membered ring containing an n^2 -ketenic group was observed and a crystal structure was accomplished.¹⁹⁴ A paramagnetic, tris-chelate complex was prepared by reaction of CrCl₃ with LiCH₂C₆H₄-o-NMe₂.¹⁹⁵

$$\operatorname{CrCl}_{3} + 3\operatorname{LiCH}_{2}\operatorname{C}_{6}\operatorname{H}_{4} - \operatorname{o-NMe}_{2} \xrightarrow{\text{THF}} \operatorname{Cr} \left(\begin{array}{c} \operatorname{CH}_{2} \\ \operatorname{N} \\ \operatorname{(Me)}_{2} \end{array} \right)_{3} (121)$$

The compound is pyrophoric and soluble in CH_2Cl_2 , toluene, and THF. The structure was suggested on the basis of analytical data, magnetic moment, (3.6 μ_B), and mass spectra.¹⁹⁵

Nitrosyls

Several reactions of bis(cyclopentadienyl dinitrosylchromium), $[CpCr(NO)_2]_2$, have been studied. Reactions with carbanions occur by attack at the nitrogen atom of one bridging nitrosyl ligand. ¹⁹⁶t-Butyl gave, after hydrolysis, dicyclopentadienyl- μ -(N-t-butylhydroxylamido)-dinitrosyl- μ -nitrosyldichromium.

Methyl- or n-butyl-lithium gave dicyclopentadienyl- μ -nitrosyldichromium with methyleneamido-dinitrosyl- μ -nitrosyldichromium with elimination of water by abstraction of an α -hydrogen.¹⁹⁶ The dimer, [CpCr(NO)₂]₂, was cleaved to the halide by I₂, HCl, NOCl, SnCl₄, SnCl₂, Mn(CO)₅Cl, and CpFe(CO)₂Cl.¹⁹⁷ Reaction of (Cp)₂Mo(NO)I with carboxylic acid caused replacement of one cyclopenta-dienyl.¹⁹⁸

$$(Cp)_{2}Mo(NO)I + RCO_{2}H \longrightarrow CpMo(NO)(O_{2}CR)I$$
(123)
R = CH₃, C₂H₅, etc.

The carboxylate group is bidentate. This reaction with acid is characteristic of $\sigma\text{-}C_5\text{H}_{5-}$ A number of reactions of cyclopentadienyl nitrosyl molybdenum were reported.

The formation of $[C_5H_5Cr(NO)_2]_2$ was observed in the reaction of $CpCr(CO)_2NO$ with NO under photolysis, although the primary product was a nitrite.¹⁹⁹

$$CpCr(CO)_2NO \xrightarrow{hv}{NO} \rightarrow [CpCr(NO)_2]_2 + CpCr(NO)_2NO_2$$
(124)

Ready displacement of both CO's producing a seventeen-electron species $CpCr(NO)_2$, which can dimerize or react with more NO to give the nitrite compound was postulated.¹⁹⁹ An optically active nitrosyl complex, CpM(CO)(NO)L was prepared for M = Cr, Mo, and W with L = chiral phosphorus ligands by replacement of CO in $CpM(CO)_2NO$.²⁰⁰ Reaction of bis-(cyclopentadienyl)nitrosylmolybdenum iodide with $F_3CC\equiv CCF_3$ led to $CpMo(C_7H_5(CF_3)_2)(I)(NO)$.²⁰¹

$$(Cp)_{2}Mo(NO)I + F_{3}CC \equiv CCF_{3} \longrightarrow I \longrightarrow Mo \qquad (125)$$

Nitrosylchloride was shown to oxidize $Cr(CO)_6$ and $C_6H_6Cr(CO)_3$ to a polymeric species, $[CrCl_2(NO)_2]_1$.²⁰² At low temperature evidence was obtained for a solvated $CrCl(CO)_2(NO)$.²⁰² Reaction of Mo and W pentacarbonyl amines with NO in benzene produced $[M(NO)_3(Am)]_2$.²⁰³

٩.

$$M(CO)_{5}^{Am} + NO \xrightarrow{benzene} [M(NO)_{3}(Am)]_{2}$$
(126)

$$M = Mo, W$$

$$Am = BuNH_{2}, py, piper, etc. '$$

These dimers were characterized by NMR and IR with IR showing both bridging and terminal NO ligands.²⁰³ $CpM(CO)_2(NO)$ was synthesized in 60-93% yield by $CpM(CO)_2^{-204}$

$$NaCpM(CO)_{3} + p-C_{6}H_{4}SO_{2}N(NO)Me \xrightarrow{THF} CpM(CO)_{2}NO$$

$$CH_{2}C1_{2} \bigvee_{0}NOC1 \qquad (127)$$

$$CpM(NO)_{2}C1$$

The second reaction occurred in 80% yield. The first organometallic thionitrosyl complex, CpCr(CO)₂NS was prepared.²⁰⁵

$$Na[CpCr(CO)_3] + 1/3 (S_3N_3C1_3) \xrightarrow{THF}_{-78^{\circ}} CpCr(CO)_2(NS) + CO + NaC1 (128)$$

The NS ligand was more effective in removing electron density from the Cr center than NO as indicated by the IR of the carbonyl stretches. 205

KINETICS AND MECHANISMS

Pickering and Angelici studied the substitution reactions of $W(CO)_3(CS)$ -(o-phen).²⁰⁶

(129)

The rate law showed both ligand independent and ligand dependent terms with the independent predominating, especially at higher temperatures. The complex, $W(CO)_3(CS)(o-phen)$, is labilized compared to $W(CO)_4(o-phen)$ by 140 times.²⁰⁶ It was postulated that the strong-pi bonding of CS weakens all CO bonds.²⁰⁶ The rate and mechanism of facial-meridional isomerization were

reported for fac 1,2-bis(diphenylphosphinoethane) (triisopropylphosphite) tricarbonylmolybdenum(0).²⁰⁷ The reaction showed a first order rate law with the following mechanism proposed.

It was suggested that $k_{-2} >> k_2$ indicating the greater stability of the intermediate with the substituted ligand in the equatorial plane.²⁰⁷ A study of the reaction of $P(0-i-C_3H_7)_3$ with (2,5 dithiahexane)tetracarbonyltungsten(0) showed non-linear plots of k_{obs} vs [L] and a highly negative entropy of activation.²⁰⁸ A predominantly associative mechanism was suggested.²⁰⁸ The kinetics and mechanism of the substitution reaction of (tmen)W(CO)₄, (tmen = N,N,N'N'-tetramethyl-ethylenediamine) were investigated.²⁰⁹

$$(tmen)W(CO)_4 + 2L \longrightarrow L_2W(CO)_4$$
 (131)
L = P(OC₆H₅)₃, P(OCH₃)₂CCH₃, PØ₃, etc.

For the different substrates the rate data supported a mechanism involving two competing pathways, one involving unimolecular, reversible ring opening and the other a concerted process involving an interchange of L and one end of the bidentate, chelating ligand.²⁰⁹ The ring opening process predominates.²⁰⁹ The rate constants for the cis-trans isomerization of cis-M(CO)₂(P-P)₂ and cis-[Mo(CO)₂(P-P)₂]⁺ were evaluated.²¹⁰

$$cis-M(CO)_2(P-P)_2 \xleftarrow{-e^-}{+e^-} cis-[M(CO)_2(P-P)_2]^+$$
 (132)

trans-M(CO)₂(P-P)₂
$$\stackrel{-e^{-}}{\longrightarrow}$$
 trans[M(CO)₂(P-P)₂]⁺

(P-P) = dpm, diphos, dmpe

Rates of isomerization were independent of the bidentate ligand and [CO], ΔS^{\dagger} values were similar and negative, and there was no solvent dependence. It was suggested that both the 17- and 18-electron complexes underwent a twist mechanism for the cis-trans isomerization.²¹⁰ The reaction of allyl bromide with (o-phen)Mo(CO)₄ was shown to proceed by a two term rate law in CH₂Cl₂ and THF.²¹¹

 $\begin{aligned} Mo(o-phen)(CO)_4 + C_3H_5Br &\longrightarrow (o-phen)Mo(CO)_2(n^3-C_3H_5)Br (133) \\ rate k_1 [M] + k_2 [M] [L] \\ M = (o-phen)Mo(CO)_4, L = C_3H_5Br \end{aligned}$

In 1,2 dichloroethane only the first order step was observed. The suggested mechanism is as follows.²¹¹

The reaction of halogens with bis(cyclopentadienyltricarbonyl-molybdenum and -tungsten) to $CpMo(CO)_3X$ was shown to proceed by halogen bridged intermediates.²¹²

The iodide bridged complex, [(CpMo(CO)₃)₂I] B(C₆H₅)₄ was isolated as confirmation of the mechanism.²¹² The reaction with bromine proceeded to CpMo(CO)₂Br₃.²¹² The kinetics and mechanism of the inversion at sulfur were studied for M(CO)₅S (S = 2,5-dihydrothiophene sulfide or β -phenethylmethylsulfide).²¹³ The β -phenethyl complex was shown by ¹³C and ¹H NMR to exist as diastereomers at -100°C. The inversion barrier, calculated from line broadening, was shown to be ΔH^{\dagger} = 10.0 kcal/mole and ΔS^{\dagger} = 2.4 e.u. Ligand exchange occurs at higher temperature with rate-determining dissociation of the sulfide.²¹³

CATALYSIS AND ORGANIC SYNTHESIS

Olefin metathesis

The interaction of AlBr₃ with $W(CO)_5L$ (L = PØ₃ and PBu₃) was studied by IR and ³¹P NMR.^{214,215} The presence of an IR absorption at 1665 was interpreted as an interaction of the aluminum with a carbonyl, $L(CO)_4W-CO-AlBr_3$. It was suggested that the interaction was trans to the ligand L and that the decreased electron density caused ready dissociation of the ligand.²¹⁴ The products were $W(CO)_6$ and $W(CO)_4Br_2$. An analogy between the reaction with AlBr₃ and olefin metathesis by complexes ($W(CO)_5L$) supported on alumina was drawn.²¹⁶ It was suggested that the interaction to the alumina is Al-OEC-W and that this leads to facile dissociation of the ligand L.²¹⁶ The metathesis of propylene by Mo(CO)₆ supported on alumina was reported to occur with 99% selectivity to ethylene and 2-butene.²¹⁷ The degenerate metathesis of CD₂ = CHC₆H₁₃ and (Z)-CDH = $CHC_{8}H_{17}$ with $MoCl_{2}(NO)_{2}(PØ_{3})_{2}$ and $(CH_{3})_{3}Al_{2}Cl_{3}$ was studied by Casey and Fuinstra.²¹⁸ The stereochemistry of this reaction provided further evidence for a carbene intermediate, M = CHR.²¹⁸ Polymer supported tungsten compounds

were active for the metathesis of trans-3-heptene to 3-hexene and 4-octene.²¹⁹ These complexes had activity and selectivity under mild conditions, ease of separation, regenerability and reuse.²¹⁹ The activity profile corresponded to that of heterogeneous catalyses i.e., low initial activity, rising to a maximum, and then leveling off.²¹⁹ The reaction of polystyrylbipyridine with $W(CO)_6$ led to binding of $W(CO)_4$ groups to the polymer.²²⁰ As a cocatalyst with C₂H₅AlCl₂ this species was active for the metathesis of 2-pentene to a 1:2:1 ratio of 2-butene, 2-pentene, and 3-hexene in 40 min. at room temperature. The presence of oxygen increased the rate.²²⁰ Irradiation ($\lambda = 350 \text{ mm}$) of $W(CO)_6$, CCl₄, and an olefin led to metathesis.²²¹ Use of trans-2-pentene produced 2-butene and 3-hexene with a 50% conversion ratio. The trans to cis ratio was 4.1, and only 1% byproducts were observed. The intermediates were believed to be $W(CO)_5$ and $W(CO)_5C1$ by IR and ESR.²²¹ The irradiation of $W(CO)_6$ with TiCl₄ also gave an active metathesis catalyst.²²² It was suggested that the key step in formation of the catalyst was the reaction of sixteen-electron species, $W(CO)_5$, with TiCl₄.²²² The metathesis of 2-pentene and 3-heptene has been studied in the presence of WC16/A1EtC12/EtOH, WCl₆/BuLi, and WCl₆/LiAlH₄.²²³ Percents of metathesis as a function of time were reported.²²³

Other catalytic reactions

A number of reactions were reported to be catalyzed by Group VI compounds last year. King and co-workers have shown that hexacarbonyls $(Cr(CO)_6, Mo(CO)_6, and W(CO)_6)$ were active homogeneous catalysts for the water-gas shift reaction.²²⁴ These carbonyls were active in the presence of base (KOH, KBH₄) in alcoholic solution at temperatures in excess of 100°C.²²⁴ Treatment of the paramagnetic cation $[(n^6-C_7H_8)Mo(py)_3]^+$ with methanethiol yields the diamagnetic cation $[(n^6-C_7H_8)Mo-(\mu-SMe)_4Mo(n^6-C_7H_8)]^{+2}$, which undergoes complete deuterium exchange of the toluene methyl hydrogens in D₂O-Na₃PO₄ buffer (pD = 11) at 25°.²²⁵ The crystal structure was done showing four symmetrically centered methanethiolate ligands.

XXXIV

The Mo-Mo distance is 2.614 Å suggesting a direct metal-metal bond.²²⁵ Arenetricarbonylmolybdenum (arene = toluene and mesitylene) was an active catalyst for the isomerization of olefins.²²⁶ The molybdenum compound was more active at 100-120°C for olefin isomerization than the chromium analogue with slightly different activities. Mixtures were obtained where more than one product was possible.²²⁶

The reaction of styrene-divinylbenzene copolymers with $Cr(CO)_6$ gave polymer - $Cr(CO)_3$ complexes which were active for hydrogenation of methylsorbate.²²⁷ The complex lost activity after 2 cycles.²²⁷ A mixture of tris(n^3 -allyl)chromium and titanium tetrachloride was active for isoprene polymerization.²²⁸ It was postulated that a bimetallic compound was the active species with bridged M-C bonds which are sites for stereospecific chain propagation.²²⁸

Organic synthesis

A technique for the removal of organic ligands from $\rm AreneCr(CO)_3$ allowing recovery of the $\rm Cr(CO)_3$ unit was reported. 229

$$(n^{6}-\text{Arene}) \text{ Cr(CO)}_{3} \xrightarrow{\text{py, reflux}} \text{ Cr(CO)}_{3}(\text{py})_{3}$$

$$\begin{cases} BF_{3}, Et_{2}0 \text{ (reflux)} \text{ (137)} \\ \text{arene} \\ (n^{6}-\text{Arene})\text{Cr(CO)}_{3} \end{cases}$$

This reaction sequence was suggested as a method for decomplexation of an arene after reaction on $Cr(CO)_3$. A high yield of arene and $Cr(CO)_3(py)_3$ was obtained and the $Cr(CO)_3(py)_3$ could be recomplexed with a new arene and used again.²²⁹ The chromium tricarbonyl complex of N-methylindole underwent nucleophilic substitution with generation of 7-substituted indoles.²³⁰

The 7-substituted indole was isolated in 41% yield.²³⁰ Selective removal of halogen from organic halides was accomplished using $[(Cp)Cr(NO)_2]_2$.²³¹

 $\left[CpCr(NO)_{2} \right]_{2} + RX \longrightarrow 2 CpCr(NO)_{2}X + R-R$ (139)

This reaction couples diarylhaloalkanes to ethanes, but does not couple allyl or methylallylhalides and does not react with alkyl halides. The complex reacts with vic-dihaloalkanes to give alkenes.²³¹

 $C_6H_5CHBrCHBr_2 \longrightarrow C_6H_5CH = CHBr$ (142)

The last reaction proceeded in 73% yield. Coupling was also effected by $W(CO)_6$ and $Mo(CO)_6$ for carbonyl compounds (ØCHO, EtCHO, and cyclohexanone) to give olefins (stilbene, etc.).²³² Methyl(methoxy)carbene chromium penta-carbonyl was used in the synthesis of ketenimines.²³³

$$(c_{0})_{5}c_{r} - c < c_{0}H_{3} + c_{6}H_{11}Nc \longrightarrow (c_{0})_{5}c_{r}(c_{10}H_{17}N0) (143)$$

The latter compound reacted with excess isocyanide to give

 $C_6H_{11}N = C = C \underbrace{\bigcirc 0CH_3}_{0CH_3}$ and $Cr(C0)_5NC_6H_{11}$.²³³ Reaction with a protonic source gives carbenes as below.²³³

XXXV -

PHOTOCHEMISTRY

A detailed study of photochemical substitutions of the hexacarbonyls was reported.²³⁴ In cyclohexane the quantum yield was 0.67 for substitution of $Cr(C0)_6$.

$$M(CO)_6 + L \xrightarrow{hv} M(CO)_5 L + CO$$
 (144)

To determine whether concentration effects had led to non-unity quantum yields the reaction of $Cr(CO)_6$ with CH_3CN (neat) was investigated.²³⁴ The quantum yield was 0.7 indicating that concentration effects were not significant. A plot of solvent viscosity with extrapolation to zero viscosity gave a quantum yield of 0.68.²³⁴ The reaction of $W(CO)_6$ with ligands was also quantum deficient (quantum yield = 0.72). Only a very small wavelength dependence of the quantum yield was noted.²³⁴ The data was interpreted as indicating the presence of an excited singlet which does not lead to dissociation but could cross very efficiently to a triplet which was dissociative.²³⁴ Photosub-stitution of the amine pentacarbonyl complexes of the Group VI metals was observed with ${}^{13}CO$.²³⁵ Two processes were observed - replacement of amine by ${}^{13}CO$ and incorporation of ${}^{13}CO$ into $M(CO)_5$ amine exclusively in the cis position.²³⁵

$$M(CO)_5 amine \xrightarrow{hv} M(CO)_6^* + M(CO)_5 amine^*$$
 (145)
amine = py, piper

The relative ease of the two reactions is dependent on the metal. With light of 313 or 366 nm the amine is dissociated preferentially for Mo and W.²³⁵ For Cr the quantum yield for CO dissociation is comparable to that of amine dissociation. The photoreactivity for CO dissociation was summarized as Cr > Mo > W; for amine dissociation, Cr \sim Mo > W.²³⁵ Darensbourg and Murphy also studied the photosubstitution of Mo(CO)₅PØ₃ and Mo(CO)₄(PØ₃)₂.²³⁶ The reactions of Mo(CO)₅PØ₃ are summarized below.

$$Mo(CO)_{5}PØ_{3} + PØ_{3} \xrightarrow{hv} (366, 313 \text{ nm}) \rightarrow cis Mo(CO)_{4}(PØ_{3})_{2} 86\% trans Mo(CO)_{4}(PØ_{3})_{2} 14\%$$

$$Mo(CO)_{5}PØ_{3} + \frac{13}{CO} \xrightarrow{hv} \rightarrow cis labeled Mo(CO)_{5}PØ_{3} trans labeled Mo(CO)_{5}PØ_{3}$$

$$Mo(CO)_{5}PØ_{3} + CO \xrightarrow{hv} \rightarrow Mo(CO)_{6} Low Quantum Yield$$

$$(146)$$

The reactions are consistent with loss of both cis and trans CO with the C_s form of the intermediate the most stable.²³⁶ Dissociation of PØ₃ from $Mo(CO)_4(PØ_3)_2$ was also consistent with this.²³⁶ The photosubstitution reactivity of a series of bis(substituted pyridine) tungsten tetracarbonyls was reported by Abrahamson and Wrighton.²³⁷ The complexes studied were cis- $W(CO)_4X_2$ (X = 3,4-dimethylpyridine, 4-ethylpyridine, 3-benzoylpyridine, etc.). Spectral data showed that the tungsten \div pyridine charge-transfer state moves to lower energy with more electron-withdrawing substituents on the pyridine while the ligand field states are insensitive to these changes.²³⁷ Photo-substitution occurred in all cases upon irradiation into the lowest energy absorption system, but the quantum efficiency was very dependent on whether the lowest energy excited state was ligand field or W \Rightarrow pyridine charge-transfer in character.²³⁷ W-pyridine charge transfer was unreactive (quantum yield = 0.001). Complexes with ligand field lowest excited states are photo-substitution labile (quantum yield = 0.4).²³⁷

Geoffroy and Bradley have described the photoinduced elimination of $\rm H_2$ from (Cp)_2MoH_2. 238

$$(Cp)_{2}MoH_{2} \xrightarrow{h_{\nu}} (Cp)_{2}Mo + H_{2}$$
(147)

The intermediate was trapped by reaction with CO, C_2H_2 , $P(Et)_3$ and $PØ_3$. The quantum yield was 0.1 with 366 nm irradiation. ²³⁸ From deuterium labeling they suggested a direct concerted elimination of H_2 and not H_2 , H^+ , or H^- . ²³⁸ The photoreaction of methyl- or n^1 -benzyl-CpW(CO)_3 were reported to depend on the reaction conditions. ²³⁹ Both compounds produce the dimer, $[CpW(CO)_3]_2$, by W-R bond scission but the n^1 -benzyl complex also produces $(n^3-CH_2C_6H_5)-W(Cp)(CO)_2$ by CO dissociation. ²³⁹ Photolysis (310-490 nm) in the presence of $PØ_3$ led to $CpW(CO)_2(PØ_3)(CH_3)$ and a dependence on the cation for the reaction pathway and quantum efficiency in reactions of $W(CO)_5X^-$, X = Br, NCO, N₃. ²⁴⁰ For the cations, Li⁺, As θ_4^+ , PPN⁺ (μ -nitrido-bis triphenylphosphorus), and NEt $_4^+$, the efficiency of the photochemical transformation and the nature of the photo-products depend on the cation. The quantum efficiency varied by > 300% when Li⁺, NEt_4^+, and As θ_4^+ salts of $W(CO)_5Br^-$ were irradiated at 436 nm. ²⁴⁰ Irradiation of $W(CO)_5N_3^-$ led to $W(CO)_6$ when PPN⁺ was the cation; the quantum yield for production of these products using the As θ_4^+ salt of the azide was zero. ²⁴⁰ Conjugated dienes, e.g. 1,3-butadiene or trans, trans-2,4-hexadiene, underwent [4S + 6S] cycloaddition with tricarbonyl-1,3,5-cycloheptatrienechromium(0) on irradiation with UV light. ²⁴¹ Tricarbonyl-bicyclo[4.4.1]undeca-1,3,7-trienechromium(0) complexes, $Cr(CO)_3C_{11}H_{17}$ and $Cr(CO)_3C_{12}H_{18}$, were isolated. The latter complex had a crystal structure

done and both were characterized by IR, NMR, and mass spectra.²⁴¹

XXXVI

Flash photolysis of the tungsten-dinitrogen complex, $W(N_2)_2(diphos)_2$, in the presence of an alkyl halide produced either $WX(N_2R)(diphos)_2$ or $[WX(N_2RH)(diphos)_2]X$.²⁴²

$$\frac{(N_2)_2(diphos)_2}{RX} \xrightarrow{RX} WX(N_2R)(diphos)_2 + [WX(N_2RH)(diphos)_2]X \quad (148)$$

RX = CH_3COC1, t-BuBr

The reaction was assumed to involve a free radical mechanism, with initial cleavage of the R-X bond.²⁴² Abrahamson and Wrighton prepared mixed metal dimers such as $Cp(CO)_3MCo(CO)_4$ and $Cp(CO)_3MFe(CO)_2Cp$, (M = Mo, W) by photolysis of the dimers $[Cp(CO)_3M]_2$ with $Co_2(CO)_8$ and $[CpFe(CO)_2]_2$.²⁴³

$$Co_2(CO)_8 + Cp_2M_2(CO)_6 \xrightarrow{hv} 2Cp(CO)_3MCo(CO)_4$$
 (149)
 $Cp_2Fe_2(CO)_4 + Cp_2M_2(CO)_6 \xrightarrow{hv} 2Cp(CO)_3MFe(CO)_2Cp$

The electronic spectra were reported and assigned. Flash photolysis of the mixed metal dimers, M-M', $(Cp)(CO)_3MCo(CO)_4$ and $Cp(CO)_3MFe(CO)_2Cp$ (M = Mo, W), resulted in formation of the homonuclear dimers, M-M and M'-M', consistent with homolytic fission of metal-metal bond.²⁴³ Photoreaction of the mixed dimers was observed with CCl₄, RX, and I₂ leading to cleavage of the metal-metal bond.²⁴³

A substantial body of research was published on photolyses of the carbonyls isolated in matrices at low temperature. Use of polarized photolysis and spectroscopy on matrix isolated $M(CO)_6$ provided data that led to a proposed mechanism for the photochemical reaction.²⁴⁴ The first step was postulated to be photoinduced dissociation of CO forming $M(CO)_5$. Internal rearrangement of $M(CO)_5$ from the square pyramidal to trigonal bipyramidal and back to square pyramidal was followed by recombination with a ligand.²⁴⁴

The intermediate $M(CO)_5$ generated by photolysis of $M(CO)_6$, M = Cr, Mo, W, with 314 nm radiation, was shown to react with N₂ when isolated in a N₂ matrix forming $Cr(CO)_5N_2$.²⁴⁵ The complex was characterized by infrared and Raman spectroscopy.²⁴⁵ Evidence for $Cr(CO)_3(NO)_2$ was obtained in frozen gas matrices from photolytic reaction of $Cr(CO)_6$ with NO and $Cr(NO)_4$ with CO.²⁴⁶

$$\operatorname{Cr}(\operatorname{CO})_{6} \xrightarrow{\operatorname{NO}} \operatorname{Cr}(\operatorname{CO})_{3}(\operatorname{NO})_{2} < \frac{\operatorname{CO}}{\operatorname{hv}} \operatorname{Cr}(\operatorname{NO})_{4}$$
(151)

Isotopic labeling studies indicated D_{3h} geometry for the five-coordinate species.²⁴⁶ Photolysis of $Cr(C0)_5PC1_3$ in an argon matrix produced only $Cr(C0)_5$ by PC1₃ dissociation while photolysis of $Cr(C0)_5(pyrazine)$ caused CO dissociation producing only $Cr(C0)_4(pyrazine)$.²⁴⁷ Similar results were also obtained on photolysis ($\lambda = 229$, 254, 280, 313, and 360 of $W(C0)_5PC1_3$.²⁴⁸ Only $W(C0)_5$ was observed, with no evidence for $W(C0)_4PC1_3$. Prolonged irradiation produced $W(C0)_4$.²⁴⁸ The reasons for the selective dissociation of PC1₃ were discussed.²⁴⁸ Ultraviolet photolysis of benzenechromium-tricarbonyl gave $C_6H_6Cr(C0)_2$ by CO dissociation.²⁴⁹ The reaction could be reversed by irradiation with visible light.²⁴⁹ Although not strictly organometallic, Klotzbucher and Ozin reported the photoaggregation of Cr and Mo atoms to clusters of known size, Cr_nMo_m , n = 0-3, m = 0-3.²⁵⁰

SPECTROSCOPIC STUDIES

Infrared and Raman

Infrared and Raman spectroscopic studies were greatly reduced in number from preceding years. A Raman investigation of the hexacarbonyls, $M(CO)_6$ (M = Cr, Mo, W) was reported with the relative intensities of the v(CO) and v(M-C).²⁵¹ The relative intensities of the A_{1g} and E_{g} stretching modes of C-O

and M-C for the hexacarbonyls were interpreted in terms of exact and approximate derived bond polarizability models. The results were in good agreement for the v(CO) but not for the low frequency v(M-C) bands.²⁵¹ For all cases the transverse and the corresponding longitudinal derivatives were of opposite sign.²⁵¹ Infrared investigations of $M(CO)_4((C_6H_5)_2P(CH_2)_3P(C_6H_5)_2)$ led to the assignment of v(M-C) and v(M-P) modes.²⁵² Fischer and coworkers investigated the infrared and Raman spectra of trans- $X(CO)_4W \equiv CCH_3$.^{253,254} Use of trans $X(CO)_4$ WCCH₃ (X = Br, C1), and trans Br(CO)₄ WCCD₃ and polarized Raman spectro-scopy allowed assignment of the W=C stretching mode.^{253,254} In the undeuterated complex this mode is coupled to the symmetric deformation. The force constant is 7.4 mdynes/Å confirming the triple bond. 253,254 Raman spectra of mixed crystals of Cr(CO)₆ and Mo(CO)₆ were reported.²⁵⁵ Intermolecular coupling of modes occurred leading to a spectrum that is not just a mixture of the two spectra.²⁵⁵ The vibrational spectra of mixed crystals of chromium-, molybdenum-, and tungsten-tricarbonyl mesitylene complexes were also reported.²⁵⁶ Although the Cr structure was not isomorphous with that of Mo and W, it still forms mixed crystals with Mo and W species. The carbon monoxide stretches showed one mode behavior.²⁵⁶ The Raman spectrum of solid $Cr(C_5H_5)_2$ was recorded from 10-1200 cm⁻¹ at ambient and low temperatures.²⁵⁷ This data was used to calculate distortions from D_{5d} symmetry.²⁵⁷

Magnetic Studies. From NMR(¹H and ¹³C) studies of (Arene)₂Cr it was found that the chemistry and stability of these complexes can be correlated with the sum of the Hammett $\sigma_{\rm p}$ parameters of the substituents.²⁵⁸ It was proposed that unsymmetrical chromarenes exhibit an internally compensating stabilization effect analogous to that of the chromium tricarbonyl moiety.²⁵⁸ NMR (1 H, 31 P, and ¹³C) was also used to investigate allyl rotations about the bond in the pseudooctahedral molybdenum and tungsten complexes $(n^3-C_3H_5)M(CO)_3(L-L)^+PF_6^-$ where L-L is a bidentate phosphorus.²⁵⁹ A ¹³C NMR study of the metal carbonyls, $CpM(CO)_3X$ (M = Mo and W, X = Cl, Br, I, CH₃, and CH₃CO₂), showed two carbonyl resonances in a 1:2 ratio.²⁶⁰ This is consistent with the "piano stool" structure and suggests that structures of substituted complexes can be assigned as cis or trans based on the number of resonances observed.²⁶⁰ The barrier to rotation about the Mo-C bond in $CH_3Mo(CO)_3Cp$ was measured by ¹³C relaxation techniques.²⁶¹ The barrier was rather large, greater than 6 kcal/mole.²⁶¹ The ¹³C chemical shift upon complexation for $ArCr(CO)_3$, Ar = benzene, hexamethyl-benzene, and hexaethylbenzene, was studied by solid state NMR.²⁶² The upfield change in ¹³C chemical shift was assigned to a very large (> 50 ppm) specific increase in screening when the external magnetic field lies in the plane of the aromatic ring along the bonds to the substituents.²⁶² The NMR (H) of

 $C_6H_6Cr(CO)_3$ was recorded in a nematic solvent and natural abundance ^{13}C satellites due to ring and carbonyl carbons were observed. ²⁶³ The structural data were in agreement with previous structural work and indirect proton-proton coupling constants were determined. ²⁶³

Chromium tricarbonyl complexes with α -substituted trans-4,4'-dimethylstilbenes were also studied by NMR.²⁶⁴ The coordination site of $Cr(CO)_2$ in diarylimines derived from aromatic aldehydes or ketones and aromatic amines has been studied.²⁶⁵ Electron density was not the only factor involved; the energy, symmetry, and representativity must also be considered.²⁶⁵ Electron transfer in the system (Arene) $_2$ Cr/(Arene) $_2$ Cr⁺ was studied by ESR and ^IH NMR line broadening.²⁶⁶ The rate constants for electron exchange between bis-(n⁶-arene)chromium(0) complexes of toluene, p-xylene, mesitylene, and durene and the corresponding radical cation showed no dependence on the degree of methylation. The rate constant, $k_{ex} = 3 \times 10^8 \text{ L} \text{ mole}^{-1} \text{s}^{-1}$, approaches the diffusion controlled limit.²⁶⁶ The ESR spectrum of aromatic ketals complexed with $Cr(CO)_3$ was measured.²⁶⁷ A strong decrease of the hyperfine coupling constant in comparison to the uncomplexed ketone was observed. This decrease was explained as a result of the sigma-electron density of $Cr(CO)_2$.²⁶⁷ The combination of magnetic circular dichroism and resonance Raman were used to show that four different electronic transitions make up one charge-transfer band of Mo(CO)₄(2-imino-methyl-pyridine).²⁶⁸ The magnetic susceptibility of chromocene, $(C_5H_5)_2Cr$, was studied between 0.90 and 300°K.²⁶⁹ This data was interpreted by employing complete ligand field theory in a slightly distorted C symmetry.²⁶⁹

Photoelectron spectra, electronic spectra, and calculations

A number of photoelectron spectral studies, primarily on the metal carbonyls were reported this year. Satellites were observed in the X-ray photoelectron spectra (ESCA) of the metal hexacarbonyls in the gas phase.²⁷⁰ The satellites were assigned to a shake-up process, simultaneous excitation of core and valence electrons. The spectra were tentatively assigned to specific transitions.²⁷⁰ The photoelectron spectra of pentacarbonyl-chromium, -molybdenum, and -tungsten complexes with ligands having pi-acceptor and sigma-donor capabilities were recorded.²⁷¹ For the complexes, LM(CO)₅ (M = Cr, Mo, W; L = PEt₃, PMe₃ P(NMe₂)₃, P(OEt)₃, P(OMe)₃, and PF₃), the pi-acceptor capabilities were reflected in the splitting of the t₂, while sigma-donor property was reflected by the ionization potential of M-P.²⁷¹ The orders observed are as follows:

pi-acceptor
$$PR_3 < P(NR_2)_3 < P(OR)_3 < PF_3$$

sigma-donor $PR_3 > P(OR)_3 > P(NR_2)_3 > PF_3$

A similar study using u.v. photoelectron spectroscopy was accomplished on $M(CO)_5 PX_3$, (M = Cr, Mo, W; X = F, Cl, Br).²⁷² It was found that pi-back-bonding more than compensates for the poor sigma donating ability. The electron density on the metal gave the following order for the ligands.

$$PF_3 < CO < PCl_3 \sim PBr_3$$

and for the metals.²⁷²

X-ray photoelectron studies were also reported on $M(CO)_5L$, $L = N_2H_2$, N_2H_4 , and NH_3 .²⁷³ The results, primarily satellite lines from shake-up processes, were discussed in terms of sigma-donor and pi-acceptor bonding.²⁷³ A study was also done on Cr(CO)₅L complexes where L = organosulfide and organophosphine ligands.²⁷⁴ The photoelectron spectrum of WMe₆ was reported and discussed.²⁷⁵

A few reports of electronic absorption studies appeared in 1978. Absorption spectra of the pyridazine, pyrazine, and pyrimidine tungstenpentacarbonyl complexes were recorded.²⁷⁶ The data was interpreted with HOMO primarily localized on the metal and with LUMO of considerable ligand character.²⁷⁶ The spectra of (diazene)pentacarbonyl metal complexes (M = Cr, Mo, W, diazene = cyclohexyldiazene, 2,3-diazanorbornene, and 4-R-3,3-bis(methoxycarbonyl-1-pyrazoline)) were assigned with the lowest band a metal charge transfer.²⁷⁷ A 1,2 shift of the M(CO)₅ group along the N=N linkage is observed in ¹³C and ¹H NMR.²⁷⁷ The electronic absorption spectra of (C₆H₆)M(CO)₃ (M = Cr, Mo, W) contained 4, 6, and 7 bands respectively.²⁷⁸ The effects of electron-donating and electron-accepting substituents were examined.²⁷⁹ Une broad band at 21.97 cm⁻¹ x 10³ was assigned to ³ $\Delta \rightarrow 2^{3}\pi$, ³ ϕ , ³H, and ³ π .²⁷⁹

Several molecular orbital calculations primarily on aromatic and cyclopentadienyl complexes were reported. INDO SCF calculations on $(C_5H_5)Cr(C_6H_6)$ showed the predominantly metal α -levels have $e_2 < a_1 < e_1$, with the e_1 interacting primarily with the pi orbitals on C_5H_5 and the metal e_2 primarily interacting with the C_6H_6 pi-orbitals.²⁸⁰ Calculations on $(C_6H_6)_2Cr$ gave the following electronic structure:²⁸¹

$$e_{lu} (\pi - C_6 H_6) < e_{lg}(\pi (C_6 H_6)) < e_{2g}(3d) < a_{lg}(3d) < e_{lg}^*(3d)$$

INDO calculations on benzylCr(CO) $_3^+$ showed a strong back donation from Cr(d $_x^2-_y^2$) to the non-bonding π - orbital of benzyl.²⁸² The CH₂ group is bent 40° towards the Cr. The suggested structure is shown below.²⁸²

XXXVII

Calculations have also been reported on $Cr(CO)_5$ where the C_{4v} was found to be the lowest electronic state;²⁸³ on $Mo(PH_3)_4(C_2H_4)_2$ for different conformations of the trans ethylenes;²⁸⁴ on (cycloheptatriene)Cr(CO)₃ and (fulvene)-Cr(CO)₃ where barriers to rotation were discussed;²⁸⁵ on the conformational preferences of substituted cyclopentadienyl and heterocyclopentadienyl complexes, such as diazaboralene;²⁸⁶ and on the metal-metal interaction in $Cr_2(CH_3)_8^{-2}$.²⁸⁷

Miscellaneous physical studies

Photoelectron spectroscopy, UV, and ¹³C NMR were used to study the bonding properties of $M(CO)_5L$ (M = Cr, W, L = amine, pyridine, or azine).²⁸⁸ No correlation was observed between the sigma-donating ability (pK_a value), ionization potential of the lone pair in the free ligand, and the stabilization energy upon complexation. The orbital energies of the d-orbitals were assigned with the e lower than b₂ by 0.2-0.3 eV for the full range of compounds. There was evidence for pi-interactions between imines and $M(CO)_5$.²⁸⁸ The complex, $W(CO)_4(CS)L$, was studied by IR and ¹³C NMR.²⁸⁹

trans- W(CO)₄(CS)I + Ag⁺ + L
$$\rightarrow$$
 trans-W(CO)₄(CS)L $\stackrel{\rightarrow}{\leftarrow}$ cis-W(CO)₄(CS)L (152)
L = P(OØ)₃, P(OCH₃)₃, PØ₃, etc.

Cis-trans equilibrium constants were correlated with Graham π -acceptor values for the ligand L.²⁸⁹ The CS ligand seemed to offer a buffering effect as witnessed by ¹³C NMR of the CS and trans CO.²⁸⁹ On the basis of electronic absorption, Raman, IR, and NMR (¹³C and ¹⁵N) spectra, it was concluded that

 $M(CO)_4DAB$ complexes have C_{2v} symmetry.²⁹⁰ Similar studies of $Mo(CO)_{4-X}L$ $(PR_3)_X$ (X = 0, 1, 2; L = DAB, pyridine-2-carbaldehydeimine, and bipy) showed the DAB ligand to be a much better pi-acceptor than the other two ligands.²⁹¹ Darensbourg and Davis reported a mass spectral study of cis- $M(CO)_4(^{13}CO)$ (piperidine) (M = Cr, W).²⁹² Low voltage mass spectra of cis $M(CO)_4(^{13}CO)$ piperidine showed loss of CO to occur statistically. It was suggested that the seventeen-electron, six coordinate species, $M(CO)_4(^{13}CO)$ -(piperidine)⁺ is fluxional prior to CO dissociation.²⁹² Mass spectra of (Cp)₂MoH₂, (Cp)₂WH₂, $(Me_2CHC_5H_4)_2MOH_2$, $(Me_2CHC_5H_4)_2WH_2$ were also reported this year.²⁹³

Only two electrochemical studies were reported in 1978. The electrochemical reduction of arylmethoxycarbene complexes of Cr, Mo, and W was accompanied by a change in the conformation of the aryl ring from a perpendicular to a coplanar geometry relative to the M-C(carbene)-0 plane.²⁹⁴ The reaction was studied by cyclic voltammetry of carbenes which are constrained to the planar or perpendicular geometry.²⁹⁴ Reduction of seven-coordinate, substituted Mo(II) and W(II) complexes, $M(CO)_3(PØ_3)_2X_2$, has been reported.²⁹⁵ When the reduction was done under CO for M = Mo the product observed was $Mo(CO)_5Cl^-$. Under argon $Mo(CO)_4(PØ_3)_2$ was observed in the expected yield for disproportionation of $Mo(CO)_3(PØ_3)_2Cl_2$. In all other cases $M(CO)_5X^-$ was the only product observed.²⁹⁵

The heats of formation of $(Cp)_2W(CH_3)_2$ and $(Cp)_2Mo(CH_3)_2$ were evaluated from the following reaction.

$$(Cp)_2 M(CH_3)_2 + HC1 \longrightarrow (Cp)_2 MC1_2 + CH_4$$
 (153)
M = Mo, W

The reaction was studied by calorimetry giving the standard heats of formation.

These values allowed derivation of the bond-enthalpy values, D(Mo-Me) = 149.5 kJ/mole and D(W-Me) = 197.8 kJ/mole.²⁹⁶ Microcalorimetric measurements were also made on the decomposition reactions of pyridine and acetonitrile complexes with Cr, Mo, and W carbonyl complexes.²⁹⁷ The bond enthalpies evaluated from these calculations are below.²⁹⁷

Cr-py (102 kJ/mole) Mo-py (146 kJ/mole) Mo-NCCH₃ (135 kJ/mole) M-py (173 kJ/mole) W-NCCH₃ (169 kJ/mole)

The order for the bonds is $D(M-CO) > D(M-py) > D(M-NCCH_3)$.²⁹⁷ The effect of complexation by tricarbonylchromium on the thermodynamic stability of stable carbocations was evaluated as the pK_R +'s for the ionization equilibria between a number of p,p' substituted diphenylmethanols.²⁹⁸ The Cr(CO)₃ group can make the complexed cation either more or less stable than the free ion depending on the structure. The effect of complexation was explained in terms of electronic and conformational effects.²⁹⁸ A phase transition was observed at 185°K for $C_4H_4SCr(CO)_3$, which was assigned to a monoclinic \div triclinic transition.²⁹⁹

STRUCTURE DETERMINATIONS

The structures of $Cr(CO)_5 \cdot THF^{300}$ and diethylaminonitrile chromium pentacarbonyl³⁰¹ were determined by X-ray crystallography. The Cr-NEC-N was linear with a Cr-N bond length of 2.063.³⁰¹ The carbonyls were normal.^{300,301} The structure of (CO)₄W(t-BuS(CH₂)_nS-t-Bu (n=2,3) showed a distorted octahedron.³⁰²

The smaller ring was more highly strained (S-W-S angle is 80°) as shown by the structure. Release of the ring strain was believed to be the driving force for reactions of this complex.³⁰² The reaction of $Cr(C0)_4(P\emptyset_2H)_2$ and $CF_3C=CCF_3$ led to a product with the ligand 1,2,3,4-tetrakis (diphenylphosphino)-1,4-difluorobutadiene chelating to two $Cr(C0)_4$ groups by the 1,4 and 2,3 phosphine groups.³⁰³ Reaction with $\emptyset C=CC00Et$ gave a different product, as shown below, also characterized by crystallography.³⁰³

XL

f

XLI

Crystal structures of trans-chloro-and trans-bromo-phenyl-carbyne chromium tetracarbonyl were reported.³⁰⁴

XLII

	Distances	
	X=C1	X=Br
Cr-X	2.40	2.57
Cr-C	1.68	1.68
C-Ø	1.46	1.48

The halogen chromium bond was shortened and the Cr-C bond was typical for Cr=C-R.³⁰⁴ Reaction of W(CO)₆ with N,N'-di-3,5-xylylformamidine produced $[W_2(CO)_2-\{\mu-HC(N-3,5-xylyl)_2\}_2 \{HC(N-3,5-xylyl)_2\} \{(N-3,5-xylyl)CH_2\}]$ which has the two tungstens bridged by 2 CO and two formamidino groups.^{305,306} This reaction and the structure was reported by two groups.^{305,306} The tungstens were pentagonal bipyramidal with a W-W distance of 2.464Å which was ascribed to a double bond.³⁰⁶ The structure of hexakis(phenylisocyanide)chromium(0), Cr(CNC₆H₅)₆, showed the isocyanide groups to have an almost octahedral arrangement around chromium with Cr-C and C-N bond lengths of 1.938 and 1.1776Å, respectively.³⁰⁷ The ligands were nearly linear with Cr-C-N, 174°, and C-N-C, 173°.³⁰⁷ Codeposition of Cr atoms with (CH₃)₂NPF₂ and CH₃N(PF₂)₂ produced CH₃N(PF₂)₂Cr(PF₂N(CH₃)₂)₄ which was characterized by a crystal

structure determination. 308

Both single-crystal neutron and X-ray diffraction techniques were used to elucidate the structure of the bis(triphenylphosphine)iminium salt of $Cr_2(CO)_{10}(\mu-H)^{-309}$ The bridging hydrogen is displaced symmetrically between two chromiums with the two chromiums eclipsed giving overall pseudo-D_{4h} geometry. The anisotropic character of the thermal ellipsoid of the bridging hydrogen indicated a slightly bent ($Cr_2(CO)_{10}H$)⁻ anion of C_{2v} -2mm geometry as observed for the Et₄N⁺ salt.³⁰⁹ The location of the bridging hydrogen in Mo₂(Cp)₂(CO)₄-(μ -P(CH₃)₂) was the subject of another study.³¹⁰

XLIII

The X-ray location of the hydrogen is displaced toward the metal-metal bond from the neutron-diffraction position. In both cases the Mo-H-Mo bond was bent. ³¹⁰ Churchill, et.al. have determined the crystal structure of the mixed-metal clusters $(\mu_2-H)Os_3W(CO)_{12}(Cp)$ and $(\mu_2-H)_3Os_3W(CO)_{11}(Cp)$. ³¹¹ The metals form a tetrahedral array with the tungsten coordinated to Cp and two terminal carbonyls and another CO asymmetrically coupling W to one Os. For the trihydride the bridging CO was replaced by two H's bridging the W to Os. ³¹¹ The structures of two molybdenum-methyltrimethylsilyl complexes (XLIV and XLV) have been determined. ³¹²

Both solution and solid state structure determinations (XLVI) were done on $\rho(n^3-c_3H_5)$ (dicarbonyl)(pentane-2,4-dionato)-pyridine molybdenum(II).³¹³

XLVI

XLVII

The molecule was fluxional at room temperature and a second isomer was detected at low temperature. The fluxionality arose by rotation of one trigonal face with respect to the second and the second isomer came by dissociation of a ligand.³¹³ The structure (XLVII) of an unusual gallium-molybdenum allyl was also determined.³¹⁴

The structure of $\text{NMe}_4(\text{Cp})\text{Cr}(\text{CO})_3$ was determined showing the expected configuration.³¹⁵ One of the cyclopendienyls in $(\text{Cp})_2\text{W}(\text{CO})_2$ (XLVIII) has been shown to be nonplanar (20° deviation from planarity).

XLVIII

XLIX

The nonplanar Cp was considered as an allyl + an olefin, thus maintaining 18 electrons around the tungsten.³¹⁶ Atwood and coworkers have reported the synthesis and structure of a closely related compound by reaction of CpW(CO)₂Cl₃ and NaC₅H₅.³¹⁷

$$C_{pW}(CO)_2 CI_3 + NaC_5H_5 \longrightarrow C_{20}H_{20}W(CO)_2$$
 (154)

The structure (L) of the optically active, square-pyramidal molybdenum H complex, CpMo(CO)₂(PØNMeC Me)Cl was reported.³¹⁸

The complex interconverts rapidly in solution. Replacement of one CO and a Cl with NO produced the optically active complex, CpMo(CO)(NO)L (L = PØ_N(CH_3)-(CMeHØ), which was also characterized by X-ray crystallography (LI). 319 A structure determination of Cp(CO)₃MoHgCl showed the Mo-Hg-Cl angle to be 160° and Mo-Hg = 2.673 Å. 320 The non-linearity was attributed to secondary halogen interactions of the Hg with two chlorides 3.075 Å away (the primary Hg-Cl was 2.437 Å). 320 The structures (LII and LIII) of two molybdenum complexes containing n^{1} - and n^{2} - iminoacyl ligands were reported by Adams and Chodosh. 321

280

The C and N bonded iminoacyl was considered a three-electron donor. The Mo-N bond length was 2.143 Å in the first complex and 3.062 Å in the second. ³²¹ Bernal and coworkers determined the structure and absolute configuration (LIV) of a square pyramidal molybdenum complex. ³²²

The structure of an oxo bridged cyclopentadiene molybdenum dimer (LV) is shown above. 323

The distance between the two benzene rings was shown to be shorter than usual in 3-8-n-[2.2.] paracyclophane chromium tricarbonyl (LVI). 324

LVI

The crystal structure of exo (LVIII) and endo (LVII) 2-methyl-l-indanolchromium tricarbonyl was reported.³²⁵

In both structures the five-membered ring was bent towards the chromium; the two structures differed in whether the methyl group was on the same side as OH or up in the "equatorial" position.³²⁵ It was suggested that these structures aid in the interpretation of reductions of cyclic ethers to alcohols.³²⁵ The structure of dicarbonyl bis(tetraphenylcyclobutadiene) molybdenum (LIX) was sterically crowded as shown by the OC-M-CO angle of 83.6°.326

LIX The contacts between CO's and $\emptyset_4 C_4$ groups led to asymmetry in the bonding of the cyclobutadienes.³²⁶ Reaction of W(CO)₆ with indene led to $(C_9 H_7)_2 W(CO)_2$ and $[(n^5 - C_9 H_7) W(CO)_3]_2$ and the structure of the first (LX) was determined.³²⁷

LX

The complex contains a planar $n^5-C_0H_7$ ring and a π -allyl, n^3 -ligand, which is bent back by 26° with the distance to non-bonding carbons, 3.2 Å. It was suggested that n^3 -indenyl species are likely intermediates in reactions.³²⁷ Structures of two tetraphenylborate complexes of molybdenum (LXI and LXII) with coordination to a phenyl ring were studied. 328

LXI

LXII

In cycloheptatrienyl(tetraphenylborato)molybdenum, the Mo was sandwiched between the cycloheptatriene and one phenyl ring from $B\emptyset_4^-$. In the tetra-ethylammonium salt of tricarbonyl(tetraphenylborato)molybdate there were three carbonyls and one phenyl ring bound to Mo. In both complexes the distance to the carbon bound to B was considerably longer than the other five Mo-C distances.³²⁸ The crystal structure (LXIII) of (C₈H₁₁N)Cr(CO)₃ which contains 6-dimethylaminofulvene coordinated to Cr was reported.³²⁹

LXIII

LXIV

The structure of 3a-4:8-8a-n-(dimethy]-5,7 cyclohepta[b]furan-one-6) chromium tricarbonyl (LXIV) showed that the heterocycle-ortho-fused to the tropone does not modify the structure of the complex obtained when Cr condenses on arenotropones. 330

Structures of several metal-metal bonded complexes were reported in 1978. Curtis and coworkers reported the structures of the complexes $(CpM(CO)_2)_2$ for M = Cr, Mo where a MEM exists.^{331,332}

LXV

LXVI

In the molybdenum complex (LXV) the carbonyls are bent over the triple bond, Mo-Mo-C angle was 67°, and the M-C-O angle is 176°, very unusual for bridging $CO.^{331}$ They suggested

with CO as a four-electron donor. The Cp-Mo-Mo-Cp was very nearly linear.³³¹ The chromium complex (LXVI) was similar in the semi-bridging CO's (Cr-Cr-CO angle was 74°) but the Cr-Cr-Cp angle was 160°.³³² The bonding in these complexes was discussed from the molecular orbitals.^{331,332} Reaction of the tungsten analogue, $Cp_2W_2(CO)_4$, with C_2H_2 produced $Cp_2W_2(CO)_4(C_2H_2)$ (LXVII) which was characterized by X-ray crystallography.³³³

LXVII

The W_2C_2 core is pseudotetrahedral with a single semi-bridging CO.³³³ Acetylene complexes with Cr and Mo were also reported, $Cr_2(CO)(Cp)_2(\emptyset C_2\emptyset)_2$ and $Mo_2(Cp)_2\{(MeO_2CC_2CO_2Me)(HC_2H)(MeO_2CC_2CO_2Me)_2\}$.³³⁴

LXVIII

The acetylenes were linked by C-C bonds. In the molybdenum complex four acetylenes were linked to an eight carbon chain. It was suggested that these bimetallic centers are intermediates in cyclizations catalyzed by transition metals.³³⁴ A very long Cr-Cr bond, 3.19 Å, was observed in the structure of $Cr_2(CO)_7(Cp)As(CH_3)_2$, probably from the steric crowding around the chromiums.³³⁵ The X-ray analysis of di- μ -(phenylthio)bis {dicarbonyl(Cp)Mo(II)} showed the Mo atoms to be joined by two symmetrical thiophenyl bridges with a Mo-Mo distance of 3.916 Å.³³⁶ The coordination around each Mo was pseudo-square pyramidal.³³⁶ Chromium atoms bridged by trimethylsilylmethyl were shown in the crystal structure (LXIX) of di- μ -trimethylsilylmethyl-bis[(trimethylphos-phine)(trimethylsilylmethyl)chromium(II)].³³⁷

The structure and bonding were discussed; the Cr-Cr distance of 2.1007 Å was consistent with a quadruple bond.³³⁷ A tungsten complex (LXX) with bridging alkylidyne groups, bis(μ -trimethylsilylmethyl)ditungsten, was also reported.³³⁸ The alkylidyne groups and W atoms were coplanar; the W-W distance was typical for single bonded tungstens.³³⁸

1.	S. W. Polichnowski, Ph.D. Thesis, University of Wisconsin, Diss. Abst. <u>B38</u> , (1977) 5945.
2.	R. M. Dahlgren, Ph.D. Thesis, UCLA, Diss. Abst. <u>39B</u> , (1978) 2795.
3.	M. Chang, Ph.D. Thesis, University of Georgia, Diss. Abst. <u>39B</u> , (1978) 3318.
4.	G. M. Gray, Ph.D. Thesis, Lehigh University, Diss. Abst. <u>39B</u> (1978) 1274.
5.	W. K. Wong, Ph.D. Thesis, University of Wisconsin, Diss. Abst. <u>39B</u> (1978) 2299.
6.	G. R. Clark, Ph.D. Thesis, Cornell University, Diss. Abst. <u>39B</u> (1978) 234.
7.	E. A. Mintz, Ph.D. Thesis, University of Massachusetts, Diss. Abst. <u>39B</u> (1978) 1768.
8.	J. K. Burdett, Coord. Chem. Rev. <u>27</u> (1978) 1.
9.	H. B. Gray, K. R. Mann, N. S. Lewís, J. A. Thich and R. M. Richmond, Adv. Chem. Ser. <u>168</u> (1978) 44
10.	T. A. George, D. C. Busby, S. D. A. Iske, Jr., Adv. Chem. Ser. <u>168</u> (1978) 147.
11.	M. L. H. Green, Pure Appl. Chem. <u>50</u> (1978) 27.
12.	M. F. Semmelhack, Annals of New York Academy of Sciences 295 (1977) 36.
13.	G. Jaouen, Annals of New York Academy of Sciences 295, (1977) 59.
14.	M. Yoshifuji, Kagaku No Ryoiki <u>32</u> (1978) 98.
15.	J. W. Faller and A. M. Rosan, Annals of New York Academy of Sciences <u>295</u> (1977) 186.
16.	A. P. Hagen, T. S. Miller, D. L. Terrell, B. Hutchinson and R. L. Hance, Inorg. Chem. <u>17</u> , (1978) 1369.
17.	I. R. Leatherman and M. S. Misura, U. S. Pat. 4,069,168.
18.	D. J. Darensbourg and R. L. Komp, Inorg. Chem. <u>17</u> (1978) 2680.
19.	D. J. Darensbourg and J. A. Froelich, J. Am. Chem. Soc. 100 (1978) 340.
20.	R. B. King and Woonza M. Rhee, Inorg. Chem. <u>17</u> , (1978) 2961.
21.	D. L. Gallup and J. G. Morse, J. Organometal. Chem. <u>159</u> (1978) 477.
22.	D. L. Gallup and J. G. Morse, Inorg. Chem. <u>17</u> (1978) 3438.
23.	R. Ernhoffer and R. E. Sheppard, J.C.S. Chem. Comm. (1978) 859.
24.	W. Beck, F. Götzfried and E. Schier, J. Organometal. Chem. <u>150</u> (1978) 247.
25.	C. J. Donahue and R. D. Archer, Inorg. Chem. <u>17</u> (1978) 1677.
26.	S. D. Brown and G. L. Gard, Inorg. Chem. <u>17</u> (1978) 1363.

- 27. R. J. Card and D. C. Neckers, Inorg. Chem. 17 (1978) 2345.
- J. E. Ellis, C. P. Parnell and G. P. Hagen, J. Am. Chem. Soc. <u>100</u> (1978) 3605.
- 29. D. J. Darensbourg and A. Salzer, J. Am. Chem. Soc. <u>100</u> (1978) 4119.
- L. D. Brown, S. Datta, J. K. Kouba, L. K. Smith and S. S. Wreford, Inorg. Chem. <u>17</u> (1978) 729.
- G. Huttner, G. Mohr, P. Friedrich and H. G. Schmid, J. Organometal. Chem. 160 (1978) 59.
- 32. L. Knoll, Z. Naturforsch, B: Anorg. Chem., Org. Chem. <u>33B</u>, (1978) 396.
- 33. H. Nöth, H. Reith and V. Thorn, J. Organometal. Chem. 159 (1978) 165.
- 34. G. M. Gray and C. S. Kraihanzel, J. Organometal. Chem. 146 (1978) 23.
- D. Sellman, A. Brandel and R. Endell, Z. Naturforsch., B: Anorg. Chem., Org. Chem. <u>33B</u>, (1978) 542.
- R. Goddard, S. D. Killops, S. A. R. Knox and P. Woodward, J.C.S. Chem. Comm. (1978) 1255.
- 37. L. Knoll, J. Organometal. Chem. 155, (1978) C63.
- 38. D. N. Pathak, Indian J. Chem. 16A (1978) 158.
- 39. D. N. Pathak, R. B. Pal and P. P. Agarwal, Indian J. Chem., Sect. A <u>16</u> (1978) 538.
- 40. G. L. Hillhouse and B. L. Haymore, J. Organometal. Chem. 162 (1978) C23.
- 41. T. A. George and M. E. Noble, Inorg. Chem. 17 (1978) 1678.
- G. Butler, J. Chatt, W. Hussain, G. J. Leigh and D. L. Hughes, Inorg. Chim. Acta. <u>30</u> (1978) L287.
- M. Sato, T. Tatsumi, T. Kodama, M. Hidai, T. Uchida and Y. Uchida, J. Am. Chem. Soc. <u>100</u> (1978) 4447.
- M. Sato, T. Kodama, M. Hidai and Y. Uchida, J. Organometal. Chem. <u>152</u> (1978) 239.
- 45. N. G. Connelly and C. Gardner, J. Organometal. Chem. <u>159</u> (1978) 179.
- 46. R. B. King and P. R. Heckley, J. Coord. Chem. 7 (1978) 193.
- 47. C. T. Lam, M. Novotny, D. L. Lewis and S. J. Lippard, Inorg. Chem. <u>17</u> (1978) 2127.
- J. Chatt, C. M. Elson, A. J. L. Pombeiro, R. L. Richards and G. H. D. Royston, J.C.S. Dalton, (1978) 165.
- 49. J. H. Eekhof, H. Hogeveen and R. M. Kellogg, J. Organometal. Chem. <u>161</u> (1978) 361.
- 50. H. Alper and H. N. Paik, J. Organometal. Chem. 155 (1978) 47.

- G. H. Barnett, M. K. Cooper, M. McPartlin and G. B. Robertson, J.C.S. Chem. Comm. (1978) 587.
- 52. F. Richter and H. Vahrenkamp, Angew. Chem. Int. Ed. 17 (1978) 444.
- 53. F. Richter and H. VahranKamp, Angew. Chem. 90 (1978) 474.
- 54. A. A. Pasynski, B. Orazsakhatov, I. L. Eremenko and V. T. Kalinikov, Izv. Akad. Nauk. S.S.S.R., Ser. Khim. (1978) 1227.
- 55. W. W. DuMont, J. Organometal. Chem. 153 (1978) Cll.
- 56. W. W. DuMont and B. Neudert, Chem. Ber. 111 (1978) 2267.
- 57. G. Huttner, A. Frank and U. Schubert, Chem. Ber. 111 (1978) 606.
- N. T. Allison, Y. Kawada and W. M. Jones, J. Am. Chem. Soc. <u>100</u> (1978) 5225.
- 59. A. J. Hartshorn, M. F. Lappert and K. Turner, J.C.S. Dalton, (1978) 348.
- W. Malisch, H. Blau and S. Voran, Angew. Chem. Int. Ed. Engl. <u>17</u> (1978) 780.
- 61. D. L. Reger and M. D. Dukes, J. Organometal. Chem. 153 (1978) 67.
- 62. M. F. Lappert and D. B. Shaw, J.C.S. Chem. Comm. (1978), 146.
- E. O. Fischer, Willi Kleine, U. Schubert and D. Neugebauer, J. Organometal. Chem. <u>149</u> (1978) C40.
- J. Levisalles, H. Rudler and D. Villemin, J. Organometal. Chem. <u>146</u> (1978) 259.
- 65. K. H. Dötz and R. Dietz, Chem. Ber. 111 (1978) 2517.
- 66a. C. P. Casey, S. W. Polichnewski, H. E. Tuinstra, L. D. Albin and J. C. Calabrese, Inorg. Chem. <u>17</u> (1978) 3045.
- 66b. J. Levisalles, H. Rudler, D. Villemin. J. Daran, Y. Jeanin and L. Martin, J. Organometal. Chem. <u>155</u> (1978) Cl.
- 67. K. H. Dötz and R. Dietz, J. Organometal. Chem. 157 (1978) C55.
- H. G. Raubenheimer, S. Lotz, H. W. Viljoen and A. A. Chambers, J. Organometal. Chem. <u>152</u> (1978) 73.
- 69. D. N. Clark and R. R. Schrock, J. Am. Chem. Soc. 100 (1978) 6774.
- D. Neugebauer, E. O. Fischer, N. Q. Dao and U. Schubert, J. Organometal. Chem. <u>153</u> (1978) C41.
- 71. E. O. Fischer and A. Ruhs, Chem. Ber. 111 (1978) 2774.
- 72. F. R. Kreissl, W. Uedelhoven and G. Kreis, Chem. Ber. 111 (1978) 3283.
- S. Fontana, O. Orama, E. O. Fischer, U. Schubert and F. R. Kreissl, J. Organometal. Chem. <u>149</u> (1978) C57.

- 74. E. O. Fischer, S. Walz, A. Ruhs and F. R. Kreissl, Chem. Ber. <u>111</u> (1978) 2765.
- 75. E. O. Fischer, M. Schluge, J. O. Besenhard, P. Friedrich, G. Huttner and F. R. Kreissl, Chem. Ber. <u>111</u> (1978) 3530.
- 76. E. O. Fischer, W. Kleine, G. Kreis and F. R. Kreissl, Chem. Ber. <u>111</u> (1978) 3542.
- 77a. F. R. Kreissl, K. Eberl and W. Kleine, Chem. Ber. 111 (1978) 2451.
- 77b. P. H. Hawker, E. P. Kündig and P. L. Timms, J.C.S. Chem. Comm. (1978) 730.
- H. F. Efner, D. E. Travault, W. B. Fox and R. R. Smardzewski, J. Organometal. Chem. <u>146</u> (1978) 45.
- 79. J. A. Gladysz, J. G. Fulcher and A. B. Bocarsly, Tett. Lett. (1978) 1725.
- A. N. Nesmeyanov, L. P. Yur'Eva, N. N. Zaitseva, G. A. Domrachev and V. D. Zinov'ev, J. Organometal. Chem. <u>153</u> (1978) 181.
- 81. C. Elschenbroich, R. Moeckle, and U. Zenneck, Angew. Chem. 90 (1978) 560.
- F. G. N. Cloke, M. L. H. Green and G. E. Morrís, J.C.S. Chem. Comm. (1978) 72.
- D. Seyferth, J. S. Merola, and C. S. Eschbach, J. Am. Chem. Soc. <u>100</u> (1978) 4124.
- 84. K. C. Nainan and Curtis T. Sears, J. Organometal. Chem. 148 (1978) C31.
- A. D. Zorin, V. A. Umilin, V. K. Vanchagova, P. E. Gaivoronskii and
 G. F. Rachkova, Zh. Obshch. Khim. <u>48</u> (1978) 1092.
- 86. C. M. Ashraf and W. R. Jackson, Aust. J. Chem. <u>31</u> (1978) 1845.
- M. ElBorai, R. Gurlard and P. Fournari, J. Organometal. Chem. <u>148</u> (1978) 277.
- A. N. Nesmeyanov, N. A. Ustynyuk, L. G. Makarova, S. Andre, Yu. A. Ustynyuk, L. N. Novikova, Yu. N. Luzikov, J. Organometal. Chem. <u>154</u> (1978) 45.
- 89. L. Weber, C. Krüger and Y. H. Isay, Chem. Ber. <u>111</u> (1978) 1709.
- 90. H. Schmidt and W. Siebert, J. Organometal. Chem. 155, (1978) 157.
- 91. R. Goetze and H. Nöth, J. Organometal. Chem. 145 (1978) 151.
- 92. F. Edelmann, D. Wormsbächer and U. Behrens, Chem. Ber. 111 (1978) 817.
- 93. M. Herberhold and M. Sus-Fink, Chem. Ber. 111 (1978) 2273.
- 94. P. L. Maux, G. Simonneaux, G. Jaouen, L. Ouahab, P. Batail, J. Am. Chem. Soc. <u>100</u> (1978) 4312.
- 95. R. D. Adams and D. F. Chodosh, J. Am. Chem. Soc. 100 (1978) 812.
- M. D. Rausch and R. E. Gloth, J. Organometal. Chem. <u>153</u> (1978) 59.

-

- 97. A. N. Nesmeyanov, L. P. Yur'eva, N. N. Zaitseva and N. I. Vasyukova, J. Organometal. Chem. <u>153</u> (1978) 341.
- G. Simonneaux, G. Jaouen, R. Dabard and M. Louer, Nouv. J. Chim. <u>2</u> (1978) 203.
- 99. W. Geibel, G. Wilke, R. Goddard, C. Kruger and R. Mynott, J. Organometal. Chem. <u>160</u> (1978) 139.
- 100. M. Berry, S. G. Davies and M. L. H. Green, J.C.S. Chem. Comm. (1978) 99.
- 101. M. L. H. Green and S. J. Simpson, J. Organometal. Chem. <u>148</u> (1978) C27.
- 102. S. Braun, P. Dahler and P. Eilbracht, J. Organometal. Chem. <u>146</u> (1978) 135.
- 103. A. N. Nesmeyanov, E. G. Perevalova, L. I. Leont'eva and E. V. Shumilina, Dokl. Akad. Nauk SSSR <u>238</u> (1978) 588.
- 104. F. Edelman and U. Behrens, Chem. Ber. 111 (1978) 3001.
- 105. R. B. King and J. Gimeno, Inorg. Chem. 17 (1978) 2396.
- 106. H. Brunner and G. Spettel, J. Organometal. Chem. <u>160</u> (1978) 149.
- 107. W. H. DeRoode, J. Berke, A. Oskam and K. Vrieze, J. Organometal. Chem. <u>155</u> (1978) 307.
- 108. W. K. Dean and B. L. Heyl, J. Organometal. Chem. <u>159</u> (1978) 171.
- 109. E. W. Abel and I. D. H. Towle, J. Organometal. Chem. <u>155</u> (1978) 299.
- 110. D. F. Gaines and S. J. Hildebrandt, Inorg. Chem. 17, (1978) 794.
- 111. C. D. Hoff and J. W. Connolly, J. Organometal. Chem. 148 (1978) 127.
- 112. J. Collin, J. L. Roustan and P. Cadiot, J. Organometal. Chem. 162 (1978) 67.
- 113. H. Alper and H. N. Paik, J. Am. Chem. Soc. 100 (1978) 508.
- 114. N. E. Kolobova, I. B. Zlotina and E. N. Yudin, Isv. Akad. Nauk SSSR, Ser. Khim., (1978) 681.
- 115. J. A. Gladysz and J. C. Selover, Tett. Lett (1978) 319.
- 116. W. Malisch and R. Janta, Angew. Chem. 90 (1978) 221.
- 117. W. E. Carroll, D. Condon, M. E. Deane and F. J. Lalor, J. Organometal. Chem. <u>157</u> (1978) C58.
- 118. R. D. Adams, D. F. Chodosh and N. M. Golembeski, Inorg. Chem. <u>17</u> (1978) 266.
- 119. M. J. Nolte and R. H. Reimann, J.C.S. Dalton (1978) 932.
- 120. I. B. Benson, J. Hunt, S. A. R. Knox and V. Oliphant, J.C.S. Dalton (1978) 1240.
- 121. M. M. Hunt, W. G. Kíta, B. E. Mann and J. A. McCleverty, J. C. S. Dalton (1978) 467.

- 122. H. Brunner, E. Bauer and J. Wachter, Chem. Ber. <u>111</u>, (1978) 379.
- 123. M. Green, H. P. Kirsch, F. G. A. Stone and A. J. Welsh, Inorg. Chim. Acta. <u>29</u> (1978) 101.
- 124. P. Powell, L. J. Russell, E. Styles, A. J. Brown, O. W. Howarth and P. Moore, J. Organometal. Chem., <u>149</u>, (1978) Cl.
- 125. N. E. Murr, M. Riveccie' and A. Salzer, Inorg. Chim. Acta. <u>29</u>, (1978) 1213.
- 126. U. Koelle, W. D. H. Beiersdorf and G. E. Herberich, J. Organometal. Chem, <u>152</u>, (1978), 7.
- 127. U. Koemm, C. G. Kreiter and H. Strack, J. Organometal. Chem., 148 (1978), 179.
- 128. H. G. Alt, J. A. Schwarzle and C. G. Kreiter, J. Organometal. Chem., <u>153</u> (1978) C7.
- 129. J. L. Thomas, Inorg. Chem., 17 (1978) 1507.
- 130. J.A. Connor and G. A. Hudson, J. Organometal. Chem. 160 (1978) 159.
- 131. C. Charrier, J. Collin, J. Y. Merour and J. L. Roustan, J. Organometal. Chem. <u>162</u> (1978) 57.
- 132. B. J. Brisdon, D. A. Edwards and J. W. White, J. Organometal. Chem. <u>156</u> (1978) 427.
- 133. G. Doyle, J. Organometal. Chem. 150 (1978) 67.
- 134. J. A. McCleverty and A. J. Murray, J. Organometal. Chem. 149 (1978) C29.
- 135. B. J. Brisdon and K. E. Paddick, J. Organometal. Chem. 149 (1978) 113.
- 136. A. A. Pinkerton, P. A. Carrupt, P. Vogel, T. Boschi, N. H. Thuy and R. Roulet, Inorg. Chim. Acta. <u>28</u> (1978) 123.
- 137. C. G. Kreiter and S. Ozkar, J. Organometal. Chem. 152 (1978) C13.
- 138. O. Stelzer and R. Schmutzler, Inorg. Synth. 18 (1978) 173.
- 139. C. J. Cardin, D. J. Cardin and A. Roy, J.C.S. Chem. Comm. (1978) 899.
- 140. C. P. Casey and S. W. Polichnowski, J. Am. Chem. Soc. 100 (1978) 7565.
- 141. E. Carmona-Guzman and G. Wilkinson, J.C.S. Dalton (1978) 1139.
- 142. J. A. Gladysz and J. C. Selover, Tett. Lett. (1978) 319.
- 143. L. Knoll, J. Organometal. Chem. 148 (1978) C25.
- 144. E. Kurras and U. Rosenthal, J. Organometal. Chem. <u>160</u> (1978) 35.
- 145. R. B. King, A. D. King Jr., M. Z. Iqbal and C. C. Frazier, J. Am. Chem. Soc. <u>100</u> (1978) 1687.
- 146. H. G. Alt and J. A. Schwärzle, J. Organometal. Chem. <u>162</u> (1978) 45.

- . .
- 147. G. N. Schrauzer, E. L. Moorehead, J. H. Grate and L. Hughes, J. Am. Chem. Soc. <u>100</u> (1978) 4760.
- 148. D. Dong, D. A. Slack and M. C. Baird, J. Organometal. Chem. <u>153</u> (1978) 219.
- 149. D. A. Ross and A. Wojcicki, Inorg. Chim. Acta. 28 (1978) 59.
- 150. R. L. Downs and A. Wojcicki, Inorg. Chim. Acta. 27 (1978) 91.
- 151. L. S. Chen, S. R. Su and A. Wojcicki, Inorg. Chim. Acta. <u>27</u> (1978) 79.
- 152. K. N. Semenenko, V. D. Makhaev and A. P. Borisov, Koord. Khim. <u>4</u> (1978) 146.
- 153. A. P. Borisov, V. D. Makhaev, G. N. Boiko and K. M. Semenenko, Koord. Khim. <u>4</u> (1978) 1274.
- 154. N. W. Hoffman and T. L. Brown, Inorg. Chem. <u>17</u> (1978) 613.
- 155. A. Samat, J. Sala-Pala, R. Guglielmetti and J. Guerchais, Nouv. J. Chim. <u>2</u> (1978) 13.
- 156. S. Datta, B. Dezube, J. K. Koube and S. S. Wreford, J. Am. Chem. Soc. <u>100</u> (1978) 4404.
- 157. M. Y. Darensbourg, N. Walker and R. R. Burch Jr., Inorg. Chem. <u>17</u> (1978) 52.
- 158. D. J. Darensbourg, R. R. Burch, Jr. and M. Y. Darensbourg, Inorg. Chem. <u>17</u> (1978) 2677.
- 159. R. Birdwhistell, P. Hackett and R. R. Manning, J. Organometal. Chem. <u>157</u> (1978) 239.
- 160. J. C. Smart and C. J. Curtis, Inorg. Chem. 17 (1978) 3290.
- 161. H. Alper and N. D. Silavwe, J. Organometal. Chem. 161 (1978) C8.
- 162. M. Börner and H. Vahrenkamp, Chem. Ber. 111 (1978) 2190.
- 163. I. B. Benson, S. A. R. Knox, P. J. Naish and A. J. Welch, J.C.S. Chem. Comm. (1978) 878.
- 164. P. Renaut, G. Tainturier and B. Gautheron, J. Organometal. Chem. <u>150</u> (1978) C9.
- 165. A. A. Pasynskii, Yu. V. Skripkin, K. M. Suvorova, O. N. Kuz'micheva and V. T. Kalinnikov, Isv. AKad. Nauk. SSSR, Ser. Khim. (1978) 1226.
- 166. A. Trenkle and H. Vahrenkamp, J. Organometal. Chem. <u>155</u> (1978) C51.
- 167. H. Brunner, R. Lukas and A. Woditsch, J. Organometal. Chem. 161 (1978) C49.
- 168. M. H. Chisholm, R. L. Kelley, F. A. Cotton and M. W. Extine, J. Am. Chem. Soc. <u>100</u> (1978) 2256.
- 169. L. H. Staal, A. Oskam and K. Vrieze, J. Organometal. Chem. 145 (1978) C7.
- 170. J. S. Bradley, J. Organometal. Chem. 150 (1978) Cl.
- 171. M. D. Curtis and R. J. Klingler, J. Organometal. Chem. <u>161</u> (1978) 23.

- 172. W. I. Bailey, Jr., M. H. Chisholm, F. A. Cotton and L. A. Rankel, J. Am. Chem. Soc. <u>100</u> (1978) 5764.
- 173. W. I. Bailey Jr., M. H. Chisholm, F. A. Cotton, C. A. Murillo and L. A. Rankel, J. Am. Chem. Soc. <u>100</u> (1978) 802.
- 174. M. H. Chisholm, F. A. Cotton, M. W. Extine and L. A. Rankel, J. Am. Chem. Soc. <u>100</u> (1978) 807.
- 175. M. H. Chisholm, M. W. Estine, R. L. Kelley, W. C. Mills, C. A. Murillo, L. A. Rankel and W. W. Reichert, Inorg. Chem. <u>17</u> (1978) 1673.
- 176. M. H. Chisholm, D. A. Haitko and C. A. Murillo, J. Am. Chem. Soc. <u>100</u> (1978) 6262.
- 177. F. A. Cotton, S. A. Koch, A. J. Schultz and J. M. Williams, Inorg. Chem. <u>17</u> (1978) 2093.
- 178. R. A. Anderson, R. A. Jones and G. Wilkinson, J.C.S. Dalton (1978) 446.
- 179. F. A. Cotton and G. W. Rice, Inorg. Chim. Acta. 27 (1978) 75.
- 180. A. N. Nesmeyanov, V. V. Krivykh, P. V. Petrovskii, V. S. Kaganovich and M. I.Rybinskaya, J. Organometal. Chem., <u>162</u>, (1978), 323
- 181. A. N. Nesmeyanov, V. V. Krivykh, and M. I. Rybinskaya, Dokl. Akad. Nauk SSSR, <u>239</u>, (1978) 1363.
- 182. A. N. Nesmeyanov, V. V. Krivykh, and M. I. Rybinskaya, Izv. Akad. Nauk SSSR, Ser. Khim (1978) 975.
- 183 G. P. Donnini and A. Shaver, Can. J. Chem., 56, (1978), 1477.
- 184. R. B. King and J. Gimeno, Inorg. Chem., 17, (1978), 2390.
- 185. D. L. Gallup and J. G. Morse, Inorg. Chem., 17, (1978), 1340.
- 186. T. B. Rauchfuss, J. Organometal. Chem., <u>162</u>, (1978), C19.
- 187. J. Grobe, J. Hendriock and G. F. Scheuer, Z. Anorg. Allg. Chem., <u>443</u>, (1978), 97.
- 188 H. Brunner and J. Wachter, J. Chem. Res. (S), (1978), 136.
- 189. W. H. DeRoode, D. G. Prins, A. Oskam, and K. Vrieze, J. Organometal. Chem., <u>154</u>, (1978), 273.
- 190. W. H. DeRoode and K. Vrieze, J. Organometal. Chem., <u>153</u>, (1978), 345.
- 191. H. Brunner, H. Schwagerl, J. Wachter, G. M. Reisner and I. Bernal, Angew. Chem. Int. Ed., <u>17</u>, (1978), 453.
- 192. H. Brunner and J. Wachter, J. Organometal. Chem. 155, (1978), C29.
- 193. H. G. Alt and J. A. Schwarzle, J. Organometal. Chem., 155, (1978), C65.
- 194. M. Green, J. Z. Myathi, C. Scott, F. G. A. Stone, A. J. Welch and P. Woodward, J.C.S. Dalton, (1978), 1067.
- 195. L. E. Manzer, J. Am. Chem. Soc., 100, (1978), 8068.

- 196. J. Muller and S. Schmitt, J. Organometal. Chem., 160, (1978), 109.
- 197. B. W. S. Kolthammer and P. Legzdins, J.C.S. Dalton, (1978), 31.
- 198. M. M. Hunt, W. G. Kita, and J. A. McCleverty, J.C.S. Dalton, (1978), 474.
- 199. B. W. Hames, P. Legzdins, and D. T. Martin, Inorg. Chem., <u>17</u>, (1978) 3644.
- 200. H. Brunner and J. Doppelberger, Chem. Ber. 111 (1978), 673.
- 201. M. M. Hunt and J. A. McCleverty, J.C.S. Dalton, (1978), 480.
- 202. M. Herberhold and L. Haumaier, J. Organometal. Chem., <u>160</u>, (1978), 101.
- 203. D. N. Pathak, Transitional Met. Chem. ,3 , (1978), 251.
- 204. J. K. Hoyano, P. Legzdins, and J. T. Malito, Inorg. Syn. 18 (1978), 126.
- 205. B. W. S. Kolthammer and P. Legzdins, J. Am. Chem. Soc., 100, (1978), 2247.
- 206. R. A. Pickering and R. J. Angelici, Inorg. Chem., 17 (1978), 2035.
- 207. J. C. Rousche and G. R. Dobson, Inorg. Chim. Acta. <u>28</u>, (1978), L139.
- 208. G. R. Dobson, J. Coord. Chem., 7, (1978), 253.
- 209. G. R. Dobson and A. Moradi-Araghi, Inorg. Chim. Acta. 31 (1978), 263.
- 210. A. M. Bond, B. S. Grabaric and J. J. Jackowski, Inorg. Chem., <u>17</u>, (1978), 2153.
- 211. J. Rousche and G. R. Dobson, J. Organometal. Chem. 150 (1978), 239.
- 212. J.C.T.R. Burkett-St. Laurent, J. S. Field, R. J. Haines, and M. McMahon, J. Organometal. Chem., <u>153</u> (1978), C19.
- 213. J. H. Eekhof, H. Hogeveen, R.M.Kellogg, and E. Klei, J. Organometal. Chem., <u>161</u>, (1978), 183.
- 214. J. L. Bilhou, A. K. Smith and J. M. Basset, J. Organometal. Chem., <u>148</u>, (1978), 53.
- 215. Y. B. Taarit, J. L. Bilhou, M. Lecomte and J. M. Basset, J.C.S. Chem. Comm., (1978) 38.
- 216. J. L. Bilhou, A. Theolier, A. K. Smith and J. M. Basset, J. Mol. Catalysis, <u>3</u> (1978), 245.
- 217. A. Brenner and R. L. Burwell, Jr., J. Catal. 52 (1978), 364.
- 218. C. P. Casey and H. E. Tuinstra, J. Am. Chem. Soc., 100, (1978), 2270.
- 219. S. Warwel and P. Buschmeyer, Angew. Chem. Int. Ed., 17 (1978), 131.
- 220. S. Tamagaki, R. J. Card and D. C. Neckers, J. Am. Chem. Soc., <u>100</u>, (1978). 6635.
- 221. P. Krausz, F. Garnier, and J. Dubois, J. Organometal. Chem. <u>146</u>, (1978), 125.

- 222. M. Nagasawa, K. Kikukawa, M. Takagi, and T. Matsuda, Bull. Chem. Soc. Japan, <u>51</u> (1978), 1293.
- 223. C. Sanchez, R. Kieffer and A. Kiennemann, J. Prakt. Chem., <u>320</u>, (1978). 329.
- 224. R. B. King, C. C. Frazier, R. M. Hanes and A. D. King, Jr., J. Am. Chem. Soc., <u>100</u>, (1978) 2927.
- 225. W. E. Silverthorn, C. Couldwell and K. Prout, J. C. S. Chem. Comm, (1978), 1009.
- 226. B. Le-thi and M. F. Farona, Inorg. Chim. Acta., 31 (1978), L463.
- 227. R. A. Awl, E. N. Frankel, J. P. Friedrich and E. H. Pryde, J. Am. 0il. Chem. Soc., <u>55</u> (1978), 577.
- 228. V. A. Vasiliev, T. I. Sokoryanskaya and V.A. Kormer, J. Polym. Sci., Polym. Chem. Ed., <u>16</u>, (1978), 2159.
- 229. G. Carganico, P. D. Buttero, S. Maiorana and G. Riccardi, J.C.S. Chem. Comm. (1978), 989.
- 230. A. P. Kozikowski and K. Isobe, J.C.S. Chem. Comm., (1978), 1076.
- 231. B. W. S. Kolthammer, P. Legzdins, and D. T. Martin, Tett. Lett. (1978), 323.
- 232. Y. Fujiwaia, R. Ishikawa, F. Akiyama and S. Teranishi, J. Org. Chem., <u>43</u>, (1978), 2477.
- 233. C. G. Kreitev and R. Aumann, Chem. Ber. 111, (1978), 1223.
- 234. J. Nasielski and A. Colas, Inorg. Chem., <u>17</u>, (1978), 237.
- 235. D. J. Darensbourg and M. A. Murphy, Inorg. Chem., 17, (1978), 884.
- 236. D. J. Darensbourg and M. A. Murphy, J. Am. Chem. Soc., 100, (1978), 463.
- 237. H. A. Abrahamson and M. S. Wrighton, Inorg. Chem., 17, (1978), 3385.
- 238. G. L. Geoffroy and M. G. Bradley, Inorg. Chem., <u>17</u>, (1978), 2410.
- 239. R. G. Severson and A. Wojcicki, J. Organometal. Chem. 157 (1978), 173.
- 240. R. M. Dahlgren and J. I. Zink, J.C.S. Chem. Comm., (1978), 863.
- 241. S. Ozkar, H. Kurz, D. Neugebauer and C. G. Kreiter, J. Organometal. Chem., <u>160</u>, (1978), 115.
- 242. R. J. W. Thomas, G. S. Laurence, and A. A. Diamantis, Inorg. Chim. Acta. <u>30</u>, (1978), L353.
- 243. H. B. Abrahamson and M. S. Wrighton, Inorg. Chem., 17, (1978), 1003.
- 244. J. K. Burdett, J. M. Grzybowski, R. N. Perutz, M. Poliakoff, J. J. Turner and R. F. Turner, Inorg. Chem., <u>17</u> (1978), 147.
- 245. J. K. Burdett, A. J. Downs, G. P. Gaskill, M. A. Graham, J. J. Turner and R. F. Turner, Inorg. Chem. <u>17</u>, (1978), 523.

- 246. S. K. Satija, B. I. Swanson, O. Crichton and A. J. Rest, Inorg. Chem., <u>17</u>, (1978), 1737.
- 247. G. Boxhoorn and A. Oskam, Inorg. Chim. Acta., 29, (1978), L207.
- 248. G. Boxhoorn and A. Oskam, Inorg. Chim. Acta., <u>29</u>, (1978), 243.
- 249. A. J. Rest, J. R. Sodeau and D. J. Taylor, J.C.S. Dalton, (1978), 651.
- 250. W. E. Klotebucher and G. A. Ozin, J. Am. Chem. Soc., 100, (1978), 2262.
- 251. S. F. A. Kettle and N. Luknar, J. Chem. Phys. <u>68</u>, (1978), 2264.
- 252. H. Gabelein and J. Ellermann, J. Organometal. Chem., 156, (1978), 389.
- 253. E. O. Fischer, N. Q. Dao, and W. R. Wagner, Angew. Chem. Int., Ed., <u>17</u>, (1978), 50.
- 254. E. O. Fischer, N. Q. Dao and W. R. Wagner, Angew. Chem. 90, (1978), 51.
- 255. D. A. Kariuki and S. F. A. Kettle, Inorg. Chem., <u>17</u>, (1978), 141.
- 256. D. N. Kariuki and S. F. A. Kettle, J.C.S. Dalton, (1978), 262.
- 257. T. Parameswaran, J. A. Koningstein, L. V. Haley and V. T. Aleksanyan, J. Chem. Phys., <u>68</u>, (1978), 1285.
- 258. N. Hao and M. J. McGlinchey, J. Organometal. Chem. <u>161</u>, (1978), 381.
- 259. J. W. Faller and D. A. Haitko, J. Organometal. Chem., <u>149</u>, (1978), C19.
- 260. L. J. Todd, J. R. Wilkinson, J. P. Hickey, D. L. Beach and K. W. Barnett, J. Organometal. Chem. <u>154</u>, (1978), 151.
- 261. R. F. Jordan, E. Tsang and J. R. Norton, J. Organometal. Chem. <u>149</u>, (1978), C53.
- 262. M. M. Maricq, J. S. Waugh, J. L. Fletcher and M. J. McGlinchey, J. Am. Chem. Soc., <u>100</u>, (1978), 6902.
- 263. P. Diehl and A. C. Kunwar, Org. Magn. Reson. 11, (1978), 47.
- 264. S. Maciaszek, W. Jasiobedzki and W. Kalinowski, Bull. Acad. Pol. Sci. Ser. Sci. Chim., <u>26</u>, (1978), 11.
- 265. A. Solladie -Cavallo, G. Solladie, and E. Tsamo, J. Organometal. Chem., <u>144</u>, (1978), 181.
- 266. Ch. Elschenbroich and U. Zenneck, J. Organometal. Chem., <u>160</u>, (1978), 125.
- 267. A. Ceccon, C. Corvaja, G. Giacometti and A. Venzo, J.C.S. Perkin Trans., <u>2</u>, (1978), 283.
- 268. R. W. Balk, D. J. Stufkens and A. Oskam, J.C.S. Chem. Comm. (1978), 1016.
- 269. E. Koenig, R. Schnakig, S. Kremer, B. Kanellakopulos, and R. Klenze, Chem. Phys., <u>27</u>, (1978), 331.

- 270. G. M. Bancroft, B. D. Boyd, and D. K. Crebor, Inorg. Chem., <u>17</u>, (1978), 1008.
- 271. L. W. Yarborough, II, and M. B. Hall, Inorg. Chem., <u>17</u>, (1978), 2269.
- 272. H. Daamen, G. Boxhoorn, and A. Oskam, Inorg. Chim. Acta., 28, (1978), 263.
- 273. H. Binder and D. Sellman, Z. Naturforsch. B. Anorg. Chem. Org. Chem. <u>33B</u>, (1978), 173.
- 274. M. A. Weiner and M. Lattman, Inorg. Chem., 17, (1978), 1084.
- 275. J. C. Green, D. R. Lloyd, L. Galver, K. Mertis and G. Wilkinson, J.C.S. Dalton, (1978), 1403.
- 276. K. H. Pannell, M. Gonzalez, H. Leano, and R. Iglesias, Inorg. Chem. <u>17</u>, (1978), 1093.
- 277. C. C. Frazier III and H. Kisch, Inorg. Chem., 17, (1978), 2736.
- 278. M. G. Evdokimova, B. M. Yavorskii, V. N. Trembouler, N. K. Baranetskaya, V. V. Krivykh, and G. B. Zaslavskaya, Dokl. Akad. Nauk SSSR, 239, (1978), 1393.
- 279. K. R. Gordon and K. D. Warren, Inorg. Chem., <u>17</u>, (1978), 987.
- 280. D. W. Clack and K. D. Warren, J. Organometal. Chem., <u>157</u>, (1978), 421.
- 281. J. Weber, M. Geoffroy, A. Goursot and E. Penigault, J. Am. Chem. Soc., <u>100</u>, (1978), 3995.
- 282. D. W. Clack and L. A. P. Kane-Maguire, J. Organometal. Chem., <u>145</u>, (1978), 201.
- 283. P. J. Hay, J. Am. Chem. Soc., <u>100</u>, (1978), 2411.
- 284. C. Bachmann, J. Demuynck and A. Veillard, J. Am. Chem. Soc., <u>100</u>, (1978), 2366.
- 285. T. A. Albright, R. Hoffmann and P. Hofmann, Chem. Ber. <u>111</u>, (1978), 1591.
- 286. T. A. Albright and R. Hoffmann, Chem. Ber. 111, (1978), 1578.
- 287. Marc Benard, J. Am. Chem. Soc., 100, (1978), 2354.
- 288. H. Daamen and A. Oskam, Inorg. Chim. Acta., 26, (1978), 81.
- 289. S. S. Woodard, R. J. Angelici and B. D. Dombek, Inorg. Chem., <u>17</u>, (1978), 1634.
- 290. L. H. Staal, D. J. Stufkens and A. Oskam, Inorg. Chim. Acta., <u>26</u>, (1978), 255.
- 291. R. W. Balk, D. J. Stufkens and A. Oskam, Inorg. Chim. Acta., <u>28</u>, (1978), 133.
- 292. R. Davis and D. J. Darensbourg, J. Organometal. Chem., <u>161</u>, (1978), Cll.
- 293. Yu. A. Andrianov, O. N. Druzhkov, A. S. Smirnov, N. V. Perevoschikova, E. E. Zhil'tsova, V. A. Donodnov, Zh. Obshch, Khim, <u>48</u>, (1978), 2097.

- 294. C. P. Casey, L. D. Albin, M. C. Saeman and D. H. Evans, J. Organometal. Chem., <u>155</u> (1978), C37.
- 295. A. M. Bond, R. Colton, and J. J. Jackowski, Inorg. Chem., <u>17</u> (1978), 105.
- 296. J. C. G. Calado, A. R. Dias, J. A. M. Simoes and M. A. V. R. DaSilva, J.C.S. Chem. Comm., (1978), 737.
- 297. F. A. Adedeji, J. A. Connor, C. P. Demain, J.A. Martinho-Simoes, H. A. Skinner, and M. T. Z. Moattar, J. Organometal. Chem,. <u>149</u>, (1978), 333.
- 298. A. Ceccon, A. Gobbo and D. Venzo, J. Organometal. Chem., <u>162</u>, (1978), 311.
- 299. G. Calvarin, J. F. Berar, D. Weigel, C. Azokpota and C. Pommier, J. Solid State Chem., <u>25</u>, (1978), 219.
- 300. U. Schubert, P. Friedrich and O. Orama, J. Organometal. Chem., <u>144</u>, (1978), 175.
- 301. V. U. Schubert, D. Noughbauer and P. Friedrich, Acta. Cryst., <u>B34</u>, (1978), 2293.
- 302. G. M. Reisner, I. Bernal, and G. R. Dobson, J. Organometal. Chem., <u>157</u>, (1978), 23.
- 303. P. M. Treichel, W. K. Wong and J. C. Calabrese, J. Organometal. Chem., <u>159</u>, (1978), C20.
- 304. A. Frank and D. O. Fischer, J. Organometal. Chem., 161, (1978), C27.
- 305. W. H. DeRoode and K. Vrieze, J. Organometal. Chem., <u>145</u>, (1978), 207.
- 306. J. C. Schagen and H. Schenk, Cryst. Struct. Comm., 7, (1978), 223.
- 307. E. Ljungstrom, Acta. Chem. Scand. A32, (1978), 47.
- 308. M. Chang, M. G. Newton and R. B. King, Inorg. Chim. Acta., <u>30</u>, (1978), L341.
- 309. J. L. Petersen, P. L. Johnson, J. O'Connor, L. F. Dahl and J. M. Williams, Inorg. Chem., <u>17</u>, (1978), 3460.
- 310. J. L. Petersen and J. M. Williams, Inorg. Chem., 17, (1978), 1308.
- 311. M. R. Churchill, F. J. Hollander, J. R. Shapley and D. S. Foose, J.C.S. Chem. Comm., (1978), 534.
- 312. E. C. Guzman, G. Wilkinson, J. L. Atwood, R. D. Rogers, W. E. Hunter, and M. J. Zaworotka, J.C.S. Chem. Comm., (1978), 465.
- 313. B. J. Brisdon and A. A. Woolf, J.C.S. Dalton (1978), 291.
- 314. K. R. Breakell, S. J. Rettig, D. L. Singbeil, A. Storr and J. Trotter, Can. J. Chem., <u>56</u>, (1978), 2099
- 315. R. Feld, E. Hellner, A. Klopsch and K. Dehnicki, Z. Anorg. Allg. Chem., <u>442</u>, (1978), 173.
- 316. G. Huttner, H. H. Brintzinger and L. G. Bell, J. Organometal. Chem., <u>145</u>, (1978), 329.

- 317. J. L. Atwood, R. D. Rogers, W. E. Hunter, I. Bernal, H. Brunner, R. Lukas, and W. Schwarz, J.C.S. Chem. Comm., (1978), 651.
- 318. G. M. Reisner, I. Bernal, H. Brunner, M. Muschiol and B. Siebrecht, J.C.S. Chem. Comm., (1978), 691.
- 319. M. G. Reisner, I. Bernal, H. Brunner and J. Doppelberger, J.C.S. Dalton (1978), 1665.
- 320. M. J. Albright, M. D. Glick and J. P. Oliver, J. Organometal. Chem., <u>161</u> (1978), 221.
- 321. R. D. Adams and D. F. Chodosh, Inorg. Chem., 17, (1978), 41.
- 322. I. Bernal, S. J. LaPlaca, J. Korp, H. Brunner and W. A. Herrmann, Inorg. Chem., <u>17</u>, (1978), 382.
- 323. C. Couldwell and K. Prout, Acta. Cryst., B34, (1978), 933.
- 324. Y. Kai, N. Yasuoka and N. Kasai, Acta. Cryst., <u>B34</u>, (1978), 2840.
- 325. E. Gentric, G. LeBorgne and D. Grandjean, J. Organometal. Chem., <u>155</u>, (1978), 207.
- 326. A. Efraty, J. A. Potenza, L. Zyontz, J. Doily, M. H. A. Huang and B. Toby, J. Organometal. Chem. <u>145</u>, (1978), 315.
- 327. A. N. Nesmeyanov, N. A. Ustynyuk, L. G. Makarova, V. G. Andrianov, Yu. T. Struckhov and S. Andrae, J. Organometal. Chem., <u>159</u>, (1978), 189.
- 328. M. B. Hossain and V. vanderHelm, Inorg. Chem., 17, (1978), 2893.
- 329. B. Lubke and U. Behrens, J. Organometal. Chem. <u>149</u>, (1978), 327.
- 330. P. Y. Dusausoy and J. Protas, Acta. Cryst., B34, (1978), 1714.
- 331. R. J. Klingler, W. M. Butler and M. David Curtis, J. Am. Chem Soc., <u>100</u>, (1978), 5034.
- 332. M. D. Curtis and W. M. Butler, J. Organometal. Chem., <u>155</u>, (1978), 131.
- 333. D. S. Ginley, C. R. Bock, M. S. Wrighton, B. Fischer, D. L. Tipton, and R. Bau, J. Organometal. Chem., <u>157</u>, (1978), 41.
- 334. S. A. R. Knox, R. F. D. Stansfield, F. G. A. Stone, M. J. Winter, and P. Woodward, J.C.S. Chem. Comm., (1978), 221.
- 335. E. Rottinger and H. Vahrenkamp, Chem. Ber. 111, (1978), 2199.
- 336. R. D. Adams, D. F. Chodosh and E. Faraci, Cryst. Struct. Comm., 7, (1978), 145.
- 337. M. B. Hursthouse, K. M. A. Malik and K. D. Sales, J.C.S. Dalton, (1978), 1314.
- 338. M. H. Chisholm, F. A. Cotton, M. W. Extine and C. A. Murillo, Inorg. Chem., 17, (1978), 696.